Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2402215, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011811

RESUMO

Durable and conductive interfaces that enable chronic and high-resolution recording of neural activity are essential for understanding and treating neurodegenerative disorders. These chronic implants require long-term stability and small contact areas. Consequently, they are often coated with a blend of conductive polymers and are crosslinked to enhance durability despite the potentially deleterious effect of crosslinking on the mechanical and electrical properties. Here the grafting of the poly(3,4 ethylenedioxythiophene) scaffold, poly(styrenesulfonate)-b-poly(poly(ethylene glycol) methyl ether methacrylate block copolymer brush to gold, in a controlled and tunable manner, by surface-initiated atom-transfer radical polymerization (SI-ATRP) is described. This "block-brush" provides high volumetric capacitance (120 F cm─3), strong adhesion to the metal (4 h ultrasonication), improved surface hydrophilicity, and stability against 10 000 charge-discharge voltage sweeps on a multiarray neural electrode. In addition, the block-brush film showed 33% improved stability against current pulsing. This approach can open numerous avenues for exploring specialized polymer brushes for bioelectronics research and application.

2.
Sci Robot ; 9(91): eadk3925, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865475

RESUMO

Electrotactile stimulus is a form of sensory substitution in which an electrical signal is perceived as a mechanical sensation. The electrotactile effect could, in principle, recapitulate a range of tactile experience by selective activation of nerve endings. However, the method has been plagued by inconsistency, galvanic reactions, pain and desensitization, and unwanted stimulation of nontactile nerves. Here, we describe how a soft conductive block copolymer, a stretchable layout, and concentric electrodes, along with psychophysical thresholding, can circumvent these shortcomings. These purpose-designed materials, device layouts, and calibration techniques make it possible to generate accurate and reproducible sensations across a cohort of 10 human participants and to do so at ultralow currents (≥6 microamperes) without pain or desensitization. This material, form factor, and psychophysical approach could be useful for haptic devices and as a tool for activation of the peripheral nervous system.


Assuntos
Elastômeros , Condutividade Elétrica , Psicofísica , Tato , Humanos , Tato/fisiologia , Adulto , Feminino , Masculino , Desenho de Equipamento , Estimulação Elétrica , Adulto Jovem , Polímeros , Eletrodos , Calibragem , Percepção do Tato/fisiologia
3.
ACS Macro Lett ; 12(12): 1718-1726, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38052039

RESUMO

We report PEDOT:PSS brushes grafted from gold using surface-initiated atom-transfer radical polymerization (SI-ATRP) which demonstrate significantly enhanced mechanical stability against sonication and electrochemical cycling compared to spin-coated analogues as well as lower impedances than bare gold at frequencies from 0.1 to 105 Hz. These results suggest SI-ATRP PEDOT:PSS to be a promising candidate for use in microelectrodes for neural activity recording. Spin-coated, electrodeposited, and drop-cast PEDOT:PSS have already been shown to reduce impedance and improve biocompatibility of microelectrodes, but the lack of strong chemical bonds of the physisorbed polymer film to the metal leads to disintegration under required operational stresses including cyclic mechanical loads, abrasion, and electrochemical cycling. Rather than modifying the metal electrode or introducing cross-linkers or other additives to improve the stability of the polymer film, this work chemically tethers the polymer to the surface, offering a simple, scalable solution for functional bioelectronic interfaces.

4.
ACS Appl Mater Interfaces ; 15(31): 38143-38153, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499172

RESUMO

For a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) film employed in a device stack, charge must pass through both the bulk of the film and interfaces between adjacent layers. Thus, charge transport is governed by both bulk and contact resistances. However, for ultrathin films (e.g., flexible devices, thin-film transistors, printed electronics, solar cells), interfacial properties can dominate over the bulk properties, making contact resistance a significant determinant of device performance. For most device applications, the bulk conductivity of PEDOT:PSS is typically improved by blending additives into the solid film. Doping PEDOT:PSS with secondary dopants (e.g., polar small molecules), in particular, increases the bulk conductivity by inducing a more favorable solid morphology. However, the effects of these morphological changes on the contact resistance (which play a bigger role at smaller length scales) are relatively unstudied. In this work, we use transfer length method (TLM) measurements to decouple the bulk resistance from the contact resistance of PEDOT:PSS films incorporating several common additives. These additives include secondary dopants, a silane crosslinker (typically used to stabilize the PEDOT:PSS film), and multi-walled carbon nanotubes (conductive fillers). Using conductive atomic force microscopy, Kelvin probe force microscopy, Raman spectroscopy, and photoelectron spectroscopy, we connect changes in the contact resistance to changes in the surface morphology and energetics as governed by the blended additives. We find that the contact resistance at the PEDOT:PSS/silver interface can be reduced by (1) increasing the ratio of PEDOT to PSS chains, (2) decreasing the work function, (3) decreasing the benzoid-to-quinoid ratio at the surface of the solid film, (4) increasing the film uniformity and contact area, and (5) increasing the phase-segregated morphology of the solid film.

5.
PLoS One ; 8(9): e73035, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24019890

RESUMO

BACKGROUND: Human tissue kallikrein (hTK) plays an essential role in the physiological and pathological mechanisms of blood vessels. This study aimed to determine whether angiogenesis induced by endothelial progenitor cells (EPCs) transduced with the adenovirus-mediated hTK gene could improve blood flow in rat hindlimb ischemia in vivo and to establish a promising mechanism in vitro. METHODS: EPCs transduced with adenovirus encoding hTK-162 (i.e., Ad/hTK-transduced EPCs or Ad/GFP-transduced EPCs) were administered to Wister rats with hindlimb ischemia through therapeutic neovascularization. Muscular capillary density (MCD), blood flow (BF), and the number of myofibers were measured at days 7, 14, and 21 after treatment. Expressions of integrin αvß3 and endothelial nitric oxide synthase (eNOS) were detected on the surface of EPCs. RESULTS: MCD, BF, and the number of myofibers in rats with Ad/hTK-transduced EPCs remarkably increased at day 21 after treatment compared with rats with Ad/GFP-transduced EPCs or the control group (P<0.01). Expressions of integrin αvß3 and eNOS protein on the surface of EPCs also increased in rats with Ad/hTK-transduced EPCs. The levels of integrin αvß3 expression were reduced by PI3K and eNOS blockade, and the inhibitor of integrin αvß3 abrogated the migration and adhesion of hTK-transduced EPCs (P<0.05). CONCLUSION: hTK gene delivery in vivo improves the natural angiogenic response to ischemia. The ability of hTK gene-transduced EPCs can be enhanced in vitro, in which integrin αvß3 plays a role in the process.


Assuntos
Endotélio/patologia , Membro Posterior/irrigação sanguínea , Integrina alfaVbeta3/genética , Isquemia/genética , Calicreínas/genética , Neovascularização Patológica , Células-Tronco/patologia , Animais , Feminino , Integrina alfaVbeta3/metabolismo , Isquemia/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Ratos , Ratos Wistar , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...