Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 256: 366-373, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29475144

RESUMO

A novel heterotrophic nitrification-aerobic denitrification bacterium, identified as Janthinobacterium sp. M-11, was isolated from the Songhua River. When the initial ammonium concentration was 5 mg·L-1, 98% of ammonium was removed under cold condition (2 °C) with the C/N ratio of 5 at initial pH 7 and aerobic condition, which demonstrated the significant ammonium removal capacity of M-11 with low nutrient consumption at cold temperature. Denitrification processes under aerobic and anaerobic conditions were also investigated. 89% of nitrite and 89% of nitrate were removed under aerobic condition. Under anaerobic condition, 93% of nitrite and 98% of nitrate were removed. Interestingly, a high amount of nitrite accumulation was observed in the mid-stage of anaerobic denitrification for nitrate. This special phenomenon was probably because of the existence of narG gene amplified in the strain M-11, which would encode membrane-bound nitrate reductase and accelerate the nitrate conversion rate of M-11 under anaerobic condition.


Assuntos
Desnitrificação , Nitratos , Aerobiose , Compostos de Amônio , Processos Heterotróficos , Nitrificação , Nitritos , Nitrogênio
2.
Water Sci Technol ; 73(1): 130-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26744943

RESUMO

An upflow anaerobic sludge bed (UASB) system with sludge immobilized on granular activated carbon was developed for fermentative hydrogen production continuously from herbal medicine wastewater at various organic loading rates (8-40 g chemical oxygen demand (COD) L(-1) d(-1)). The maximum hydrogen production rate reached 10.0 (±0.17) mmol L(-1) hr(-1) at organic loading rate of 24 g COD L(-1) d(-1), which was 19.9% higher than that of suspended sludge system. The effluents of hydrogen fermentation were used for continuous methane production in the subsequent UASB system. At hydraulic retention time of 15 h, the maximum methane production rate of 5.49 (±0.03) mmol L(-1) hr(-1) was obtained. The total energy recovery rate by co-production of hydrogen and methane was evaluated to be 7.26 kJ L(-1) hr(-1).


Assuntos
Biocombustíveis , Reatores Biológicos , Hidrogênio/metabolismo , Metano/metabolismo , Águas Residuárias , Fermentação , Medicina Herbária , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...