Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Scientifica (Cairo) ; 2024: 5791613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938545

RESUMO

The aim of this study is to explore the mechanism by which ARHGAP4 regulates the proliferation and growth of colon cancer cells, and it relates to the metastasis of colorectal cancer (CRC). Various techniques including western blot, CCK8, qRT-PCR, RNA seq assay, plate cloning, subcutaneous tumorigenesis assays, and bioinformatics tools were employed to identify genes that were upregulated or downregulated upon ARHGAP4 knockdown and their involvement in tumor cell proliferation and growth. The expression of ARHGAP4 in T and M stages of CRC uses immunohistochemistry. The expression levels of ARHGAP4 were found to be high in SW620, SW480, and HCT116 cell lines, while they were being low in HT29, LoVo, and NCM460 cell lines. Depletion of ARHGAP4 resulted in inhibited proliferation and growth in SW620 cells and inhibited subcutaneous tumorigenesis in nude mice, whereas overexpression of ARHGAP4 promoted proliferation and growth in HT29 cells and promoted subcutaneous tumorigenesis in nude mice. A total of 318 upregulated genes and 637 downregulated genes were identified in SW620 cells upon ARHGAP4 knockdown. The downregulated genes were primarily associated with cell cycle pathways, while the upregulated genes were enriched in differentiation-related pathways. Notable upregulated genes involved in cell differentiation included KRT10, KRT13, KRT16, IVL, and CD24, while significant downregulation was observed in genes related to the cell cycle such as CCNA2, CDKN2C, CDKN3, CENPA, and CENPF. ARHGAP4 expression is markedly elevated in the M1 stage of CRC compared to the M0 stage, suggesting ARHGAP4 linked to the metastatic in CRC. ARHGAP4 regulates the proliferation and growth of colon cancer cells by up- and downregulated cell cycle and differentiation-related molecules, which may be related to the metastasis of CRC.

2.
Langmuir ; 40(20): 10814-10824, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38723195

RESUMO

Morphology regulation is an effective strategy for improving the sensor sensitivity of transition metal oxide nanostructures. In this work, SnO2 with three different morphologies (nanorods, nanoparticles, and nanopillars) has been synthesized by a simple one-step solvothermal process with the addition of various solute ratios at 180 °C for 6 h for detecting formaldehyde (HCHO) at the optimum working temperature of 320 °C. Compared to nanorods and nanopillars, the created SnO2 nanoparticles exhibit a much faster response time and sensitivity than other samples, showing the fastest recovery time (18 s) with the highest sensitivity of 6-100 ppm of the HCHO gas. The sensing mechanism of the sensors is investigated by Brunauer-Emmett-Teller (BET) methods and X-ray photoelectron spectroscopy (XPS) analysis, revealing that the pore size distribution and amount of OV and OC improve the charge transfer and HCHO adsorption of nanoparticle sensors. Such an effect of morphology control on sensing performance paves an idea for the development of different structure-based HCHO sensors.

3.
Langmuir ; 40(19): 10334-10345, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691021

RESUMO

The utilization and selectivity of single atoms have garnered significant attention among researchers. However, they are easy to agglomerate because of their high surface energy. To overcome this challenge, it is crucial to seek suitable carriers to anchor single metal atoms to achieve optimal performance. In this work, the structures of transition metal single atoms embedded in hexagonal boron nitride (MB2N2, M = Fe, Co, Ni, Cu, Zn) are constructed and used for the adsorption and sensing of lithium battery thermal runaway gases (H2, CO, CO2, CH4) through the DFT method. The adsorption behavior of MB2N2 was evaluated through the adsorption energy, sensitivity, and recovery time. The calculation results indicate that CoB2N2 exhibits strong adsorption capacity for both H2 and CO. The sensitivity of FeB2N2 toward CO is as high as 3.232 × 1016. Subsequently, the adsorption mechanism was studied through TDOS and PDOS, and the results showed that hybridization between orbitals enhanced the gas adsorption performance. This study presents novel approaches for designing single-atom carriers and developing MB2N2 sensors for detecting lithium battery thermal runaway gases.

4.
Mikrochim Acta ; 191(5): 234, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568389

RESUMO

The detection of hazardous CO gas is an important research content in the domain of the Internet of Things (IoT). Herein, we introduced a facile metal-organic frameworks (MOFs)-templated strategy to synthesize Cd-doped Co3O4 nanosheets (Cd-Co3O4 NSs) aimed at boosting the CO-sensing performance. The synthesized Cd-Co3O4 NSs feature a multihole nanomeshes structure and a large specific surface area (106.579 m2·g-1), which endows the sensing materials with favorable gas diffusion and interaction ability. Furthermore, compared with unadulterated Co3O4, the 2 mol % Cd-doped Co3O4 (2% Cd-Co3O4) sensor exhibits enhanced sensitivity (244%) to 100 ppm CO at 200 °C and a comparatively low experimental limit of detection (0.5 ppm/experimental value). The 2% Cd-Co3O4 NSs show good selectivity, reproducibility, and long-term stability. The improved CO sensitivity signal is probably owing to the stable nanomeshes construction, high surface area, and rich oxygen vacancies caused by cadmium doping. This study presents a facile avenue to promote the sensing performance of p-type metal oxide semiconductors by enhancing the surface activity of Co3O4 combined with morphology control and component regulation.

5.
Front Public Health ; 12: 1319977, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406503

RESUMO

This study aimed to analyze the differences in colorectal cancer (CRC) survival between urban and rural areas over the past 20 years, as well as investigate potential prognostic factors for CRC survival in both populations. Using registry data from Surveillance, Epidemiology, and End Results (SEER) from 2000 to 2019, 463,827 CRC cases were identified, with 85.8% in urban and 14.2% in rural areas. The mortality of CRC surpassed its survival rate by the sixth year after diagnosis in urban areas and the fifth year in rural areas. Furthermore, the 5-year overall survival (OS) of CRC increased by 2.9-4.3 percentage points in urban and 0.6-1.5 percentage points in rural areas over the past two decades. Multivariable Cox regression models identified independent prognostic factors for OS and disease-specific survival (DSS) of CRC in urban and rural areas, including age over 40, Black ethnicity, and tumor size greater than 5 cm. In addition, household income below $75,000 was found to be an independent prognostic factor for OS and DSS of CRC in urban areas, while income below $55,000 was a significant factor for rural areas. In conclusion, this study found a notable difference in CRC survival between rural and urban areas. Independent prognostic factors shared among both rural and urban areas include age, tumor size, and race, while household income seem to be area-specific predictive variables. Collaboration between healthcare providers, patients, and communities to improve awareness and early detection of CRC may help to further advance survival rates.


Assuntos
Neoplasias Colorretais , Etnicidade , Humanos , Prognóstico , População Rural , Taxa de Sobrevida , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/diagnóstico
6.
Pest Manag Sci ; 80(6): 2689-2697, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38327015

RESUMO

BACKGROUND: RNA interference (RNAi) is the sequence-dependent suppression of gene expression by double-stranded RNA (dsRNA). This is a promising strategy for the control of insect pests because dsRNA can be rationally designed to maximize efficacy and biosafety, the latter by using sequences that are found in target pests but are safe for non-target insects. However, this has yet to be optimized in aphids, destructive sap-sucking pests that also transmit plant viruses. We used the green peach aphid (Myzus persicae) as a case study to optimize the efficiency of RNAi by applying a novel fusion dsRNA design. RESULTS: Comparative transcriptomics revealed a number of genes that are induced in feeding aphids, and eight candidate genes were chosen as RNAi targets. To improve RNAi efficiency, our fusion dsRNA design approach combined optimal gene fragments (highly conserved in several aphid species but with less homology in beneficial insects such as the predator ladybeetle Propylea japonica) from three candidate genes. We compared this RNAi-based biological control approach with conventional chemical control using imidacloprid. We found that the fusion dsRNA strategy inhibited the aphid population to a significantly greater extent than single-target RNAi and did not affect ladybeetle fitness, allowing an additive effect between RNAi and natural predation, whereas imidacloprid was harmful to aphids and ladybeetles. CONCLUSION: Our fusion dsRNA design approach enhances the ability of RNAi to control aphids without harming natural predators. © 2024 Society of Chemical Industry.


Assuntos
Afídeos , Interferência de RNA , RNA de Cadeia Dupla , Afídeos/genética , Animais , RNA de Cadeia Dupla/genética , Besouros/genética , Controle Biológico de Vetores/métodos , Controle de Insetos/métodos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia
7.
J Mol Cell Cardiol ; 188: 38-51, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38224851

RESUMO

RNA binding proteins have been shown to regulate heart development and cardiac diseases. However, the detailed molecular mechanisms is not known. In this study, we identified Wilms' tumor 1-associating protein (WTAP, a key regulatory protein of the m6A RNA methyltransferase complex) as a key regulator of heart function and cardiac diseases. WTAP is associated with heart development, and its expression is downregulated in both human and mice with heart failure. Cardiomyocyte-specific knockout of Wtap (Wtap-CKO) induces dilated cardiomyopathy, heart failure and neonatal death. Although WTAP deficiency in the heart decreases METTL3 (methyltransferase-like 3) protein levels, cardiomyocyte-specific overexpression of Mettl3 in Wtap-CKO mice does not rescue the phenotypes of Wtap-CKO mice. Instead, WTAP deficiency in the heart decreases chromatin accessibility in the promoter regions of Mef2a (myocyte enhancer factor-2α) and Mef2c, leading to reduced mRNA and protein levels of these genes and lower expression of their target genes. Conversely, WTAP directly binds to the promoter of the Mef2c gene and increases its promoter luciferase activity and expression. These data demonstrate that WTAP plays a key role in heart development and cardiac function by maintaining the chromatin accessibility of cardiomyocyte specific genes.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Animais , Humanos , Camundongos , Cardiomiopatia Dilatada/genética , Cromatina , Regulação para Baixo , Insuficiência Cardíaca/genética , Metiltransferases , Miócitos Cardíacos
8.
Int J Biol Macromol ; 257(Pt 2): 128715, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081484

RESUMO

Hydrogels with excellent high-water uptake and flexibility have great potential for wound dressing. However, pure hydrogels without fiber skeleton faced poor water retention, weak fatigue resistance, and mechanical strength to hinder the development of the dressing as next-generation functional dressings. We prepared an ultrafast gelation (6 s) Fe3+/TA-CNC hydrogel (CTFG hydrogel) based on a self-catalytic system and bilayer self-assembled composites. The CTFG hydrogel has excellent flexibility (800% of strain), fatigue resistance (support 60% compression cycles), antibacterial, and self-adhesive properties (no residue or allergy after peeling off the skin). CTFG@S bilayer composites were formed after electrospun silk fibroin (SF) membranes were prepared and adhesive with CTFG hydrogels. The CTFG@S bilayer composites had significant UV-shielding (99.95%), tensile strain (210.9 KPa), and sensitive humidity-sensing properties. Moreover, the integrated structure improved the mechanical properties of electrospun SF membranes. This study would provide a promising strategy for rapidly preparing multifunctional hydrogels for wound dressing.


Assuntos
Celulose , Fibroínas , Polifenóis , Cimentos de Resina , Bandagens , Antibacterianos/farmacologia , Hidrogéis , Água
9.
Cancer Res ; 84(1): 154-167, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37847513

RESUMO

Intraductal carcinoma of the prostate (IDC-P) is a lethal prostate cancer subtype that generally coexists with invasive high-grade prostate acinar adenocarcinoma (PAC) but exhibits distinct biological features compared with concomitant adenocarcinoma. In this study, we performed whole-exome, RNA, and DNA-methylation sequencing of IDC-P, concurrent invasive high-grade PAC lesions, and adjacent normal prostate tissues isolated from 22 radical prostatectomy specimens. Three evolutionary patterns of concurrent IDC-P and PAC were identified: early divergent, late divergent, and clonally distant. In contrast to those with a late divergent evolutionary pattern, tumors with clonally distant and early divergent evolutionary patterns showed higher genomic, epigenomic, transcriptional, and pathologic heterogeneity between IDC-P and PAC. Compared with coexisting PAC, IDC-P displayed increased expression of adverse prognosis-associated genes. Survival analysis based on an independent cohort of 505 patients with metastatic prostate cancer revealed that IDC-P carriers with lower risk International Society of Urological Pathology (ISUP) grade 1-4 adenocarcinoma displayed a castration-resistant free survival as poor as those with the highest risk ISUP grade 5 tumors that lacked concurrent IDC-P. Furthermore, IDC-P exhibited robust cell-cycle progression and androgen receptor activities, characterized by an enrichment of cellular proliferation-associated master regulators and genes involved in intratumoral androgen biosynthesis. Overall, this study provides a molecular groundwork for the aggressive behavior of IDC-P and could help identify potential strategies to improve treatment of IDC-P. SIGNIFICANCE: The genomic, transcriptomic, and epigenomic characterization of concurrent intraductal carcinoma and adenocarcinoma of the prostate deepens the biological understanding of this lethal disease and provides a genetic basis for developing targeted therapies.


Assuntos
Adenocarcinoma , Carcinoma Intraductal não Infiltrante , Neoplasias da Próstata , Masculino , Humanos , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Próstata/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Neoplasias da Próstata/patologia , Genômica , Gradação de Tumores
10.
Langmuir ; 40(1): 1058-1071, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38146207

RESUMO

To investigate the application of modified hexagonal boron nitride (h-BN) in the detection and monitoring of harmful gases (NO2, NO, NH3, and CO), first-principles calculations are applied to study the geometric structure and electronic behavior of the adsorption system. In this paper, the four adsorption sites, namely, B, N, bridge, and hollow sites, are considered to explore the stable adsorption structure of metals (M = Rh, Pd, Ag, Ir, Pt, and Au) on the BN surface. The calculation results demonstrate that the geometric structures of metal at the N-site are relatively stable. Subsequently, the different adsorption structures of NO2, NO, NH3, and CO on M-BN are researched. The electron transfer, charge difference density, and work function of the stable adsorption structure are calculated. The results show that NO2, NO, and CO have the strongest adsorption capacity in the Ir-BN system, with adsorption energies of -2.705, -5.064, and -3.757 eV, respectively. The Pt-BN system has an excellent adsorption performance (-2.251 eV) for NH3. Compared with the M-BN system, the work function of the adsorption system increases after adsorbing NO2, while it decreases after adsorbing NH3. This work shows that h-BN with metal modification is a potential material for online monitoring of harmful gases.

11.
Pestic Biochem Physiol ; 197: 105645, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072520

RESUMO

RNA interference (RNAi) is a promising tool for pest control and relies on sequence-specific gene silencing. Salivary proteins are cooperatively secreted into plants to guarantee the feeding of aphids; thus they have potential to develop as selective targets for RNAi-based pest control strategy. For this purpose, we firstly analyzed 18 salivary proteomes of various aphid species, and these salivary proteins can be mainly categorized into seven functional groups. Secondly, we created a work-flow for fusion dsRNA design that can target multiple genes but were selectively safe to beneficial insects. Based on this approach, seven fusion dsRNAs were designed to feed the green peach aphid, which induced a significant reduction in aphid fitness. Among them, ingestion of dsperoxidase induced the highest mortality in aphids, which was also significantly higher than that of traditional dsRNAs in targeting three peroxidases separately. In addition, dsperoxidase-fed green peach aphids triggered the highest H2O2 content of host plants as well as the attraction to natural enemies (ladybeetle and parasitic wasp) but repellent to other control aphids. Our results indicate that the fusion dsRNA design approach can improve aphid control capacity, and the fusion dsRNA targeting salivary protein-encoding genes can enhance the direct and indirect defenses of host plants, thus providing a new strategy for RNAi-based aphid control.


Assuntos
Afídeos , Animais , Interferência de RNA , Afídeos/genética , Afídeos/metabolismo , Peróxido de Hidrogênio/metabolismo , Inativação Gênica , RNA de Cadeia Dupla/genética , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo
12.
Phys Chem Chem Phys ; 25(43): 30014-30022, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37905440

RESUMO

Platinum (Pt) nanoparticles/nanoclusters are some of the most efficient cocatalysts for photocatalytic CO2 reduction. Nevertheless, the produced CO can lead to a poisoning effect due to the strong adsorption strength of the Pt cocatalysts. Using density functional theory, PtOx clusters with variable sizes (Pt4O6, Pt5O8, Pt7O10, and Pt8O13) are selected to load on WS2 (PtOx-WS2) for photocatalytic CO2 conversion. The calculated results demonstrate that PtOx-WS2 are highly stable, and the electron-rich PtOx clusters are beneficial for the photocatalytic CO2 reduction. All the PtOx-WS2 catalysts exhibit efficient photocatalytic performance for CO2 reduction. Especially, Pt4O6-, Pt5O8-, and Pt8O13-WS2 have acceptable or ultra-low ΔGmax (ΔG for the rate-determining step) of 0.57, 0.23, and 0.48 eV to produce CH3OH, HCOOH, and CH4, respectively. The photocatalytic activities of PtOx-WS2 are correlated with the adsorption strength of the key intermediates, and the strong interactions between PtOx-WS2 and *COOH or *HCOO can lower the free energy changes for the first hydrogenation step. More importantly, PtOx-WS2 can also weaken the adsorption strength of *CO and *HCOOH, which are conducive to forming *CHO. This work gives an in-depth insight to design novel catalysts and promote their catalytic activity for photocatalytic CO2 reduction.

13.
Nanomaterials (Basel) ; 13(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570506

RESUMO

Gas-sensing technology has gained significant attention in recent years due to the increasing concern for environmental safety and human health caused by reactive gases. In particular, spinel ferrite (MFe2O4), a metal oxide semiconductor with a spinel structure, has emerged as a promising material for gas-sensing applications. This review article aims to provide an overview of the latest developments in spinel-ferrite-based gas sensors. It begins by discussing the gas-sensing mechanism of spinel ferrite sensors, which involves the interaction between the target gas molecules and the surface of the sensor material. The unique properties of spinel ferrite, such as its high surface area, tunable bandgap, and excellent stability, contribute to its gas-sensing capabilities. The article then delves into recent advancements in gas sensors based on spinel ferrite, focusing on various aspects such as microstructures, element doping, and heterostructure materials. The microstructure of spinel ferrite can be tailored to enhance the gas-sensing performance by controlling factors such as the grain size, porosity, and surface area. Element doping, such as incorporating transition metal ions, can further enhance the gas-sensing properties by modifying the electronic structure and surface chemistry of the sensor material. Additionally, the integration of spinel ferrite with other semiconductors in heterostructure configurations has shown potential for improving the selectivity and overall sensing performance. Furthermore, the article suggests that the combination of spinel ferrite and semiconductors can enhance the selectivity, stability, and sensing performance of gas sensors at room or low temperatures. This is particularly important for practical applications where real-time and accurate gas detection is crucial. In conclusion, this review highlights the potential of spinel-ferrite-based gas sensors and provides insights into the latest advancements in this field. The combination of spinel ferrite with other materials and the optimization of sensor parameters offer opportunities for the development of highly efficient and reliable gas-sensing devices for early detection and warning systems.

14.
Int J Biol Macromol ; 247: 125828, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37453633

RESUMO

This work develops a sustainable and global strategy to enhance fruit preservation efficacy. The dual-use composite coating or film comprises silk fibroin/cellulose nanocrystals (SF/CNC) with superior ductility through a synergistic plasticizing effect of glycerol and natural aloe-emodin powder (AE) as antimicrobial agents. To confirm our strategy, two common fruit preservation materials (edible surface coating-SCA-CS; packaging film-SCA-PF) and five different fruits (strawberries, bananas, apples, blueberries, and guavas) have been used. Moreover, SCA-CS coating with antibacterial and antioxidant activities formed an ultrathin layer on the fruit's surfaces with a thickness of 7.7 µm and could be easily washable. Therefore, bananas and strawberries' shelf-life with SCA-CS coating can be extended for 9 days and 6 days, respectively. The discharge water of SCA-CS has excellent biosafety in an indoor environment with no threat to plant health (microgreens bean sprouts germination as a case study). The plant exhibited positive results within 15 days, and leaves maintained their green color with a germination rate of 97.6 %. The toughness of SCA-PF film increased by 14,685.7 % with a water vapor transmission rate (WPTR) of 17 g mm m-2 day-1, which confirms that the concept of SCA-PF film and SCA-CS coating are feasible to be used for fruit preservation/packaging.


Assuntos
Anti-Infecciosos , Quitosana , Filmes Comestíveis , Frutas/microbiologia , Contenção de Riscos Biológicos , Antibacterianos , Conservação de Alimentos/métodos , Quitosana/química , Embalagem de Alimentos
15.
Mol Med ; 28(1): 152, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36510147

RESUMO

BACKGROUND: Acute renal injury (AKI) secondary to ischemia reperfusion (IR) injury continues to be a significant perioperative problem and there is no effective treatment. Mindin belongs to the mindin/F-spondin family and involves in inflammation, proliferation, and cell apoptosis. Previous studies have explored the biological functions of mindin in liver and brain ischemic injury, but its role in AKI is unknown. METHOD: To investigate whether mindin has a pathogenic role, mindin knockout (KO) and wild-type (WT) mice were used to establish renal IR model. After 30 min of ischemia and 24 h of reperfusion, renal histology, serum creatinine, and inflammatory response were examined to assess kidney injury. In vitro, proinflammatory factors and inflammatory signaling pathways were measured in mindin overexpression or knockdown and vector cells after hypoxia/reoxygenation (HR). RESULTS: Following IR, the kidney mindin level was increased in WT mice and deletion of mindin provided significant protection for mice against IR-induced renal injury as manifested by attenuated the elevation of serum creatinine and blood urea nitrogen along with less severity for histological alterations. Mindin deficiency significantly suppressed inflammatory cell infiltration, TNF-α and MCP-1 production following renal IR injury. Mechanistic studies revealed that mindin deficiency inhibits TLR4/JNK/NF-κB signaling activation. In vitro, the expression levels of TNF-α and MCP-1 were increased in mindin overexpression cells compared with vector cells following HR. Moreover, TLR4/JNK/NF-κB signaling activation was elevated in the mindin overexpression cells in response to HR stimulation while mindin knockdown inhibited the activation of TLR4/JNK/ NF-κB signaling after HR in vitro. Further study showed that mindin protein interacted directly with TLR4 protein. And more, mindin protein was confirmed to be expressed massively in renal tubule tissues of human hydronephrosis patients. CONCLUSION: These data demonstrate that mindin is a critical modulator of renal IR injury through regulating inflammatory responses. TLR4/JNK/NF-κB signaling most likely mediates the biological function of mindin in this model of renal ischemia.


Assuntos
NF-kappa B , Traumatismo por Reperfusão , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa , Creatinina , Traumatismo por Reperfusão/metabolismo , Rim/metabolismo , Hipóxia , Isquemia , Camundongos Endogâmicos C57BL
16.
Front Oncol ; 12: 899837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847897

RESUMO

Background: This study aims to analyze the correlation between ARHGAP4 in the expression and clinical characteristics of colorectal cancer (CRC), and the influence of ARHGAP4 expression on the prognosis of CRC, and to evaluate whether ARHGAP4 is a potential prognostic oncotarget for CRC. Methods: ARHGAP4 was identified using the Gene Expression Omnibus database through weighted gene coexpression network analysis. Using the Gene Expression Profiling Interactive Analysis to perform and analyze the expression and prognosis of ARHGAP4 in CRC. The expression of AGRGAP4 and immune cells was analyzed by the Tumor IMmune Estimation Resource online database. Finally, immunohistochemistry was used to analyze the expression difference and prognosis of ARHGAP4 in CRC and adjacent normal tissues, as well as the relationship between AGRGAP4 expression and clinical features of CRC. Results: We identified ARHGAP4 that is related to the recurrence of CRC from GSE97781 data. ARHGAP4 has not been reported in CRC. The high expression of ARHGAP4 in select colon adenocarcinoma indicates a poor prognosis by database analysis. In our clinical data results, ARHGAP4 is highly expressed in CRC and lowly expressed in normal tissues adjacent to cancer. Compared with the low-expression group, the high-expression group has a significantly poorer prognosis. In colon cancer, the B-cell, macrophage, neutrophil, and dendritic-cell levels are downregulated after ARHGAP4 gene knockout; the levels of CD8+ and CD4+ T cells, neutrophils, and dendritic cells are upregulated after the amplification of the ARHGAP4 gene. In addition, ARHGAP4 expression is related to N,M staging and clinical staging. Conclusion: ARHGAP4 is highly expressed in CRC, and the high expression of ARHGAP4 has a poor prognosis. The expression of ARHGAP4 in CRC is related to the immune cells such as B cells, CD8+ and CD4+ T cells, macrophages, neutrophils, and dendritic cells. ARHGAP4 is correlated with N,M staging and clinical staging in CRC. ARHGAP4 may be a potential biomarker for the prognosis of CRC.

17.
J Int Money Finance ; 124: 102633, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35341221

RESUMO

The past decades have witnessed recurrent price discrepancies in cryptocurrency markets across countries. In addition to prior explanations that generally attribute this phenomenon to domestic capital controls during normal periods, we provide another explanation that investors perceive cryptocurrency as an alternative (hedging) investment, especially under uncertainty. Using the emerging of the COVID-19 pandemic in 2020 and the subsequent lockdown policies implemented by a group of countries as natural experiments, we adopt a difference-in-difference framework to examine how the nexus affects Bitcoin price discrepancies. We find that price discrepancies are larger in countries with confirmed cases of COVID-19 and rigorously implementing lockdown policies. We then verify our "alternative investment" hypothesis on the mechanism by showing that countries with intensified exposure to media hype on COVID-19 topics and with more panic emotion among citizens during the pandemic generally experienced larger Bitcoin price discrepancies than their counterparts. We also find that domestic capital control, sanitary policy stringency, uncertainty aversion, individualistic culture, and governmental power could moderate the general effect.

18.
Can J Gastroenterol Hepatol ; 2022: 3109165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35028301

RESUMO

Background: This study was to evaluate the prognostic value of the preoperative neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and carcinoembryonic antigen (CEA) in colorectal cancer (CRC) patients and to identify the potential and easily accessible prognostic biomarkers for CRC. Methods: We retrospectively reviewed altogether the records of 330 CRC patients according to inclusion criteria. The clinical characteristics include age at diagnosis, body mass index (BMI), preoperative CEA level, neutrophil , lymphocyte, and platelet count, tumor primary site and size, clinical pathological TNM stage, and survival status were recorded through the review of medical records. The overall survival (OS) was calculated using the Kaplan-Meier method. The Cox proportional hazards model was used for the univariate and multivariate analysis to evaluate the prognostic factors of CRC. Results: A total of 330 patients were finally included in the current study. The mean follow-up duration was 32.8 ± 19.1 months (range, 0.1-67.7). Compared with the median OS, preoperative high NLR, PLR, and CEA, and low BMI had lower median OS. The NLR and PLR value rise indicates lower median OS in stage I-II CRC; however, the NLR value and CEA level rise indicates lower median OS in stage III-IV CRC. Preoperative high NLR, PLR, and CEA level and low BMI have poorer OS by univariate analysis. By multivariate analysis, the age, sex, N, M stage, and BMI demonstrated independently influence the OS of CRC. NLR was an independent predictor of stage I-II CRC, and the CEA level was an independent predictor of stage III-IV CRC. Conclusions: Our results show that preoperative high NLR, PLR, CEA, and low BMI had poorer OS, NLR was an independent predictor of stage I-II CRC, and the CEA level was an independent predictor of stage III-IV CRC.


Assuntos
Antígeno Carcinoembrionário , Neoplasias Colorretais , Biomarcadores Tumorais , Neoplasias Colorretais/cirurgia , Humanos , Linfócitos , Neutrófilos , Prognóstico , Estudos Retrospectivos
19.
Ren Fail ; 43(1): 1470-1478, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34723730

RESUMO

OBJECTIVE: The aim of present report was to elucidate the effect of cell division cycle associated 4 (CDCA4) on the proliferation and apoptosis of Wilm's tumor cells, and to further evaluate its underlying mechanism. METHODS: The expression profiles of CDCA4 and clinical information of Wilm's tumor patients were obtained from public Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database portal. Real-time qPCR and western blot analyses were utilized to determine the expression levels of CDCA4. Gain- and loss-of-function of CDCA4 assays were conducted with transfection technology to investigate the biological role of CDCA4 in Wilm's tumor cells. Cell counting kit 8 and flow cytometer assays were employed to examine the effect of CDCA4 on the cells proliferation and apoptosis. Protein expression levels of indicated markers in each group of Wilm's tumor cells were measured by western blot. RESULTS: The transcriptional expression of CDCA4 was drastically upregulated in Wilm's tumor tissues according to the public TARGET database and in Wilm's tumor cells. The cells viability was remarkably reduced whereas the cells apoptosis was increased in CDCA4-knockdown group compared with negative control group. However, CDCA4-overexpression group promoted the cells proliferation and suppressed the cells apoptosis. Furthermore, the protein expression levels of p-AKT, p-mTOR, and Cyclin D1 were significantly reduced after depletion of CDCA4, whereas overexpression of CDCA4 dramatically elevated these markers' expression levels. CONCLUSIONS: CDCA4 is highly expressed in Wilm's tumor and promoted the proliferation whereas inhibited the apoptosis of Wilm's tumor cells through activating the AKT/mTOR signaling pathway.


Assuntos
Apoptose , Proteínas de Ciclo Celular/metabolismo , Neoplasias Renais/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tumor de Wilms/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Ciclina D1/metabolismo , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Tumor de Wilms/genética , Tumor de Wilms/patologia
20.
ACS Appl Mater Interfaces ; 13(22): 26318-26329, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34032420

RESUMO

Two-dimensional (2D) porous bimetallic oxide nanosheets are attractive for high-performance gas sensing because of their porous structures, high surface areas, and cooperative effects. Nevertheless, it is still a huge challenge to synthesize these nanomaterials. Herein, we report a general strategy to fabricate porous cobalt-based bimetallic oxide nanosheets (Co-M-O NSs, M = Cu, Mn, Ni, and Zn) with an adjustable Co/M ratio and the homogeneous composition using metal-organic framework (MOF) nanosheets as precursors. The obtained Co-M-O NS possesses the porous nanosheet structure and ultrahigh specific surface areas (146.4-220.7 m2 g-1), which enhance the adsorption of CO molecules, support the transport of electrons, and expose abundant active sites for CO-sensing reaction. As a result, the Co-M-O NS exhibited excellent sensing performances including high response, low working temperature, fast response-recovery, good selectivity and stability, and ppb-level detection limitation toward CO. In particular, the Co-Mn-O NS showed the highest response of 264% to 100 ppm CO at low temperature (175 °C). We propose that the excellent sensing performance is ascribed to the specific porous nanosheet structure, the relatively highly active Co3+ ratio resulting from cation substitution, and large amounts of chemisorbed oxygen species on the surface. Such a general strategy can also be introduced to design noble-metal-free bimetallic metal oxide nanosheets for gas sensing, catalysis, and other energy-related fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...