Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Syst Biol Appl ; 10(1): 26, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453929

RESUMO

Cell migration is crucial for numerous physiological and pathological processes. A cell adapts its morphology, including the overall and nuclear morphology, in response to various cues in complex microenvironments, such as topotaxis and chemotaxis during migration. Thus, the dynamics of cellular morphology can encode migration strategies, from which diverse migration mechanisms can be inferred. However, deciphering the mechanisms behind cell migration encoded in morphology dynamics remains a challenging problem. Here, we present a powerful universal metric, the Cell Morphological Entropy (CME), developed by combining parametric morphological analysis with Shannon entropy. The utility of CME, which accurately quantifies the complex cellular morphology at multiple length scales through the deviation from a perfectly circular shape, is illustrated using a variety of normal and tumor cell lines in different in vitro microenvironments. Our results show how geometric constraints affect the MDA-MB-231 cell nucleus, the emerging interactions of MCF-10A cells migrating on collagen gel, and the critical transition from proliferation to invasion in tumor spheroids. The analysis demonstrates that the CME-based approach provides an effective and physically interpretable tool to measure morphology in real-time across multiple length scales. It provides deeper insight into cell migration and contributes to the understanding of different behavioral modes and collective cell motility in more complex microenvironments.


Assuntos
Entropia , Movimento Celular , Linhagem Celular Tumoral
2.
Biosens Bioelectron ; 251: 116122, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382271

RESUMO

Immunoassay, as the most commonly used method for protein detection, is simple to operate and highly specific. Sensitivity improvement is always the thrust of immunoassays, especially for the detection of trace quantities. The emergence of artificial enzyme, i.e., DNAzyme, provides a novel approach to improve the detection sensitivity of immunoassay. Simultaneously, its advantages of simple synthesis and high stability enable low cost, broad applicability and long shelf life for immunoassay. In this review, we summarized the recent advances in DNAzyme-based immunoassay. First, we summarized the existing different DNAzymes based on their catalytic activities. Next, the common signal amplification strategies used for DNAzyme-based immunoassays were reviewed to cater to diverse detection requirements. Following, the wide applications in disease diagnosis, environmental monitoring and food safety were discussed. Finally, the current challenges and perspectives on the future development of DNAzyme-based immunoassays were also provided.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , DNA Catalítico/metabolismo , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Monitoramento Ambiental
3.
Biophys J ; 123(6): 730-744, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38366586

RESUMO

Cell migration, which is primarily characterized by directional persistence, is essential for the development of normal tissues and organs, as well as for numerous pathological processes. However, there is a lack of simple and efficient tools to analyze the systematic properties of persistence based on cellular trajectory data. Here, we present a novel approach, the entropy of angular distribution , which combines cellular turning dynamics and Shannon entropy to explore the statistical and time-varying properties of persistence that strongly correlate with cellular migration modes. Our results reveal the changes in the persistence of multiple cell lines that are tightly regulated by both intra- and extracellular cues, including Arpin protein, collagen gel/substrate, and physical constraints. Significantly, some previously unreported distinctive details of persistence have also been captured, helping to elucidate how directional persistence is distributed and evolves in different cell populations. The analysis suggests that the entropy of angular distribution-based approach provides a powerful metric for evaluating directional persistence and enables us to better understand the relationships between cellular behaviors and multiscale cues, which also provides some insights into the migration dynamics of cell populations, such as collective cell invasion.


Assuntos
Colágeno , Entropia , Movimento Celular , Linhagem Celular
4.
Ultrason Sonochem ; 104: 106808, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377805

RESUMO

Ultrasound technology has been extensively used as one of the efficient and economic methodology to achieve the desired outcomes in many applications by harnessing the physico-chemical effects of acoustic cavitation. However, the cavitation-associated effects, primarily determined by the oscillatory dynamics of cavitation bubbles, are considerably complex and still remain poorly understood. The main objective of this study was to perform a numerical analysis of the acoustic cavitation (i.e., the cavitation dynamics, the resultant temperature, pressure and chemical yields within collapsing bubbles), particularly focusing on the influence of the interactions between bubbles. A comprehensive model was developed to simulate the acoustic cavitation dynamics via combining the influences of mass transfer, heat conduction and chemical reactions as well as the interaction effects between bubbles. The results demonstrated that only the large bubble exerts a greater impact on the small one in a two-bubble system. Specifically, within parameter ranges covered this study, there are noticeable decreases in the expansion ratio of the small bubble, the resultant temperature, pressure and molar yields of free radicals, hence weakening the cavitation intensity and cavitation- associated physico-chemical effects. Moreover, the influences of the interactions between bubbles were further assessed quantitatively under various parameters, such as the ultrasound amplitude PA and frequency f, the distance between bubbles d0, the initial radius of the large bubble R20, as well as the liquid properties (e.g., surface tension σ and viscosity µ). It was found that the suppression effect can be amplified when subjected to ultrasound with an increased PA and/or a decreased f, probably due to a stronger cavitation intensity under this condition. Additionally, the suppression effect is also enhanced with a decrease in d0, σ and µ, but with R20 increasing. This study can contribute to deepening knowledge about acoustic cavitation and the resultant physical and/or chemical effects, potentially further facilitating the ultrasound-assisted various applications involving acoustic cavitation.

5.
Ultrason Sonochem ; 99: 106586, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37688945

RESUMO

The cavitation dynamics of a two-bubble system in viscoelastic media excited by dual-frequency ultrasound is studied numerically with a focus on the effects of inter-bubble interactions. Compared to the isolated bubble cases, the enhancement or suppression effects can be exerted on the amplitude and nonlinearity of the bubble oscillations to different degrees. Moreover, the interaction effects are found to be highly sensitive to multiple paramount parameters related to the two-bubble system, the dual-frequency ultrasound and the medium viscoelasticity. Specifically, the larger bubble of a two-bubble system shows a stronger effect on the smaller one, and this effect becomes more pronounced when the larger bubble undergoes harmonic and/or subharmonic resonances as well as the two bubbles get closer (e.g., d0 < 100 µm). For the influences of the dual-frequency excitation, the results show that the bubbles can achieve enhanced harmonic and/or subharmonic oscillations as the frequency combinations with small frequency differences (e.g., Δf < 0.2 MHz) close to the corresponding resonance frequencies of bubbles, and the interaction effects are consequently intensified. Similarly, the bubble oscillations and the interaction effects can also be enhanced as the acoustic pressure amplitude of each frequency component is equal and the pressure amplitude pA increases. Above a pressure threshold (pA = 215 kPa), a larger bubble undergoes period 2 (P2) oscillations, which can force a smaller bubble to change its oscillation pattern from period 1 (P1) into P2 oscillations. In addition, it is found that the medium viscosity dampens the bubble oscillations while the medium elasticity affects the bubble resonances, accordingly exhibiting stronger interaction effects at smaller viscosities (e.g., µ < 4 mPa·s) or certain elasticities (approximately G = 70-120 kPa, G = 160-200 kPa and G = 640-780 kPa) at which the bubble resonances occur. The study can contribute to a better understanding of the complex dynamic behaviors of interacting cavitation bubbles in viscoelastic tissues for high efficient cavitation-mediated biomedical applications using dual-frequency ultrasound.

6.
Ultrasonics ; 134: 107089, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37406389

RESUMO

This study seeks to explore the bubble pulsation characteristics in multi-bubble environment with a special focus on the influences of the size polydispersity and the two-dimensional structure of bubbles. Three representative configurations of three interacting bubbles are formed by setting the initial radii of cavitation bubbles and inter-bubble distances appropriately, then the pulsation characteristics of a small bubble are investigated and compared by the bifurcation analysis. The results illustrate that the bubble size polydispersity and two-dimensional structure would greatly affect the bubble pulsations (i.e., the amplitude and nonlinearity of pulsations). Furthermore, the effects of two-dimensional structure are strong at a small inter-bubble distance of the large and small bubbles while the bubble size polydispersity always significantly affects the bubble pulsations for all cases. Moreover, the influences of both bubble size polydispersity and two-dimensional structure can be enhanced as the acoustic pressure increases, which can also become stronger when the large bubble is located at the same side as the small bubble and the initial radius of large bubble increases. Additionally, the effects would also be increased when the tissue viscoelasticity varies within a certain range. The present findings shed new light on the dynamics of multiple polydisperse microbubbles in viscoelastic tissues, potentially contributing to an optimization of their applications with ultrasound excitation.

7.
Ultrason Sonochem ; 97: 106456, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37271030

RESUMO

The cavitation dynamics of an air-vapor mixture bubble with ultrasonic excitation can be greatly affected by the equation of state (EOS) for the interior gases. To simulate the cavitation dynamics, the Gilmore-Akulichev equation was coupled with the Peng-Robinson (PR) EOS or the Van der Waals (vdW) EOS. In this study, the thermodynamic properties of air and water vapor predicted by the PR and vdW EOS were first compared, and the results showed that the PR EOS gives a more accurate estimation of the gases within the bubble due to the less deviation from the experimental values. Moreover, the acoustic cavitation characteristics predicted by the Gilmore-PR model were compared to the Gilmore-vdW model, including the bubble collapse strength, the temperature, pressure and number of water molecules within the bubble. The results indicated that a stronger bubble collapse was predicted by the Gilmore-PR model rather than the Gilmore-vdW model, with higher temperature and pressure, as well as more water molecules within the collapsing bubble. More importantly, it was found that the differences between both models increase at higher ultrasound amplitudes or lower ultrasound frequencies while decreasing as the initial bubble radius and the liquid parameters (e.g., surface tension, viscosity and temperature of the surrounding liquid) increase. This study might offer important insights into the effects of the EOS for interior gases on the cavitation bubble dynamics and the resultant acoustic cavitation-associated effects, contributing to further optimization of its applications in sonochemistry and biomedicine.

8.
Ultrason Sonochem ; 95: 106375, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965309

RESUMO

Due to its physical and/or chemical effects, acoustic cavitation plays a crucial role in various emerging applications ranging from advanced materials to biomedicine. The cavitation bubbles usually undergo oscillatory dynamics and violent collapse within a viscoelastic medium, which are closely related to the cavitation-associated effects. However, the role of medium viscoelasticity on the cavitation dynamics has received little attention, especially for the bubble collapse strength during multi-bubble cavitation with the complex interactions between size polydisperse bubbles. In this study, modified Gilmore equations accounting for inter-bubble interactions were coupled with the Zener viscoelastic model to simulate the dynamics of multi-bubble cavitation in viscoelastic media. Results showed that the cavitation dynamics (e.g., acoustic resonant response, nonlinear oscillation behavior and bubble collapse strength) of differently-sized bubbles depend differently on the medium viscoelasticity and each bubble is affected by its neighboring bubbles to a different degree. More specifically, increasing medium viscosity drastically dampens the bubble dynamics and weakens the bubble collapse strength, while medium elasticity mainly affects the bubble resonance at which the bubble collapse strength is maximum. Differently-sized bubbles can achieve resonances and even subharmonic resonances at high driving acoustic pressures as the elasticity changes to certain values, and the resonance frequency of each bubble increases with the elasticity increasing. For the interactions between the size polydisperse bubbles, it indicated that the largest bubble generally has a dominant effect on the dynamics of smaller ones while in turn it is almost unaffected, exhibiting a pattern of destructive and constructive interactions. This study provides a valuable insight into the acoustic cavitation dynamics of multiple interacting polydisperse bubbles in viscoelastic media, which may offer a potential of controlling the medium viscoelasticity to appropriately manipulate the dynamics of multi-bubble cavitation for achieving proper cavitation effects according to the desired application.

9.
Ultrason Sonochem ; 94: 106334, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36805411

RESUMO

The resonance behaviors of a few lipid-coated microbubbles acoustically activated in viscoelastic media were comprehensively examined via radius response analysis. The size polydispersity and random spatial distribution of the interacting microbubbles, the rheological properties of the lipid shell and the viscoelasticity of the surrounding medium were considered simultaneously. The obtained radius response curves present a successive occurrence of linear resonances, nonlinear harmonic and sub-harmonic resonances with the acoustic pressure increasing. The microbubble resonance is radius-, pressure- and frequency-dependent. Specifically, the maximum bubble expansion ratio at the main resonance peak increases but the resonant radius decreases as the ultrasound pressure increases, while both of them decrease with the ultrasound frequency increasing. Moreover, compared to an isolated microbubble case, it is found that large microbubbles in close proximity prominently suppress the resonant oscillations while slightly increase the resonant radii for both harmonic and subharmonic resonances, even leading to the disappearance of the subharmonic resonance with the influences increasing to a certain degree. In addition, the results also suggest that both the encapsulating shell and surrounding medium can substantially dampen the harmonic and subharmonic resonances while increase the resonant radii, which seem to be affected by the medium viscoelasticity to a greater degree rather than the shell properties. This work offers valuable insights into the resonance behaviors of microbubbles oscillating in viscoelastic biological media, greatly contributing to further optimizing their biomedical applications.

10.
Comb Chem High Throughput Screen ; 26(1): 103-115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35345996

RESUMO

BACKGROUND: Thrombosis triggered by platelet activation plays a vital role in the pathogenesis of cardiovascular and cerebrovascular diseases. OBJECTIVE: This study aims to find platelet combined biomarkers for cardiovascular diseases and investigate the possibility of Concanavalin A (ConA) acting on platelets as a new pharmacological target. METHODS: High-throughput Technology and bioinformatics analysis were combined and groups of microarray chip gene expression profiles for acute myocardial infarction (AMI) and sickle cell disease (SCD) were obtained using GEO database screening. R language limma package was used to obtain differentially expressed genes (DEGs). GO, KEGG, and other databases were utilized to perform the enrichment analysis of DEGs' functions, pathways, etc. PPI network was constructed using STRING database and Cytoscape software, and MCC algorithm was used to obtain the 200 core genes of the two groups of DEGs. Core targets were confirmed by constructing an intersection area screening. A type of molecular probe, ConA, was molecularly docked with the above core targets on the Zdock, HEX, and 3D-DOCK servers. RESULTS: We found six core markers, CD34, SOCS2, ABL1, MTOR, VEGFA, and SMURF1, which were simultaneously related to both diseases, and the docking effect showed that VEGFA is the best-performing. CONCLUSION: VEGFA is most likely to reduce its expression by binding to ConA, which could affect the downstream regulation of the PI3K/Akt signaling pathway during platelet activation. Some other core targets also have the opportunity to interact with ConA to affect platelet-activated thrombosis and trigger changes in cardiovascular events.


Assuntos
Plaquetas , Perfilação da Expressão Gênica , Fosfatidilinositol 3-Quinases , Transcriptoma , Análise de Sequência com Séries de Oligonucleotídeos
11.
Ultrason Sonochem ; 90: 106224, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36368292

RESUMO

Acoustic droplet vaporization (ADV) plays an important role in focused ultrasound theranostics. Better understanding of the relationship between the ultrasound parameters and the ADV nucleation could provide an on-demand regulation and enhancement of ADV for improved treatment outcome. In this work, ADV nucleation was performed in a dual-frequency focused ultrasound configuration that consisted of a continuous low-frequency ultrasound and a short high-frequency pulse. The combination was modelled to investigate the effects of the driving frequency and acoustic power on the nucleation rate, efficiency, onset time, and dimensions of the nucleation region. The results showed that the inclusion of short pulsed high-frequency ultrasound significantly increased the nucleation rate with less energy, reduced the nucleation onset time, and changed the length-width ratio of the nucleation region, indicating the dual-frequency ultrasound mode yields an efficient enhancement of the ADV nucleation, compared to a single-frequency ultrasound mode. Furthermore, the acoustic and temperature fields varied independently with the dual-frequency ultrasound parameters. This facilitated the spatial and temporal control over the ADV nucleation, and opens the door to the possibility to realize on-demand regulation of the ADV occurrence in ultrasound theranostics. In addition, the improved energy efficacy that is obtained with the dual-frequency configuration lowered the requirements on hardware system, increasing its flexibility and could facilitate its implementation in practical applications.


Assuntos
Acústica , Ondas Ultrassônicas , Volatilização , Ultrassonografia/métodos , Temperatura
12.
Phys Med Biol ; 67(8)2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35354134

RESUMO

Objective.Acoustic cavitation and its mechanical effects (e.g. stress and strain) play a primary role in ultrasound applications. Introducing encapsulated microbubbles as cavitation nuclei and utilizing dual-frequency ultrasound excitation are highly effective approaches to reduce cavitation thresholds and enhance cavitation effects. However, the cavitation dynamics of encapsulated microbubbles and the resultant stress/strain in viscoelastic tissues under dual-frequency excitation are poorly understood, especially for the enhancement effects caused by a dual-frequency approach. The goal of this study was to numerically investigate the dynamics of a lipid-coated microbubble and the spatiotemporal distributions of the stress and strain under dual-frequency excitation.Approach.The Gilmore-Zener bubble model was coupled with a shell model for the nonlinear changes of both shell elasticity and viscosity to accurately simulate the cavitation dynamics of lipid-coated microbubbles in viscoelastic tissues. Then, the spatiotemporal evolutions of the cavitation-induced stress and strain in the surrounding tissues were characterized quantitatively. Finally, the influences of some paramount parameters were examined to optimize the outcomes.Main results.We demonstrated that the cavitation dynamics and associated stress/strain were prominently enhanced by a dual-frequency excitation, highlighting positive correlations between the maximum bubble expansion and the maximum stress/strain. Moreover, the results showed that the dual-frequency ultrasound with smaller differences in its frequencies and pressure amplitudes could enhance the bubble oscillations and stress/strain more efficiently, whereas the phase difference manifested small influences under these conditions. Additionally, the dual-frequency approach seemed to show a stronger enhancement effect with the shell/tissue viscoelasticity increasing to a certain extent.Significance.This study might contribute to optimizing the dual-frequency operation in terms of cavitation dynamics and its mechanical effects for high-efficient ultrasound applications.


Assuntos
Acústica , Microbolhas , Lipídeos , Ultrassonografia , Viscosidade
13.
Micromachines (Basel) ; 12(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34577768

RESUMO

Encapsulated microbubbles combined with ultrasound have been widely utilized in various biomedical applications; however, the bubble dynamics in viscoelastic medium have not been completely understood. It involves complex interactions of coated microbubbles with ultrasound, nearby microbubbles and surrounding medium. Here, a comprehensive model capable of simulating the complex bubble dynamics was developed via taking the nonlinear viscoelastic behaviors of the shells, the bubble-bubble interactions and the viscoelasticity of the surrounding medium into account simultaneously. For two interacting lipid-coated bubbles with different initial radii in viscoelastic media, it exemplified that the encapsulating shell, the inter-bubble interactions and the medium viscoelasticity would noticeably suppress bubble oscillations. The inter-bubble interactions exerted a much stronger suppressing effect on the small bubble within the parameters examined in this paper, which might result from a larger radiated pressure acting on the small bubble due to the inter-bubble interactions. The lipid shells make the microbubbles exhibit two typical asymmetric dynamic behaviors (i.e., compression or expansion dominated oscillations), which are determined by the initial surface tension of the bubbles. Accordingly, the inertial cavitation threshold decreases as the initial surface tension increases, but increases as the shell elasticity and viscosity increases. Moreover, with the distance between bubbles decreasing and/or the initial radius of the large bubble increasing, the oscillations of the small bubble decrease and the inertial cavitation threshold increases gradually due to the stronger suppression effects caused by the enhanced bubble-bubble interactions. Additionally, increasing the elasticity and/or viscosity of the surrounding medium would also dampen bubble oscillations and result in a significant increase in the inertial cavitation threshold. This study may contribute to both encapsulated microbubble-associated ultrasound diagnostic and emerging therapeutic applications.

14.
Ultrason Sonochem ; 78: 105712, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34391164

RESUMO

The cavitation-mediated bioeffects are primarily associated with the dynamic behaviors of bubbles in viscoelastic tissues, which involves complex interactions of cavitation bubbles with surrounding bubbles and tissues. The radial and translational motions, as well as the resultant acoustic emissions of two interacting cavitation bubbles in viscoelastic tissues were numerically investigated. Due to the bubble-bubble interactions, a remarkable suppression effect on the small bubble, whereas a slight enhancement effect on the large one were observed within the acoustic exposure parameters and the initial radii of the bubbles examined in this paper. Moreover, as the initial distance between bubbles increases, the strong suppression effect is reduced gradually and it could effectively enhance the nonlinear dynamics of bubbles, exactly as the bifurcation diagrams exhibit a similar mode of successive period doubling to chaos. Correspondingly, the resultant acoustic emissions present a progressive evolution of harmonics, subharmonics, ultraharmonics and broadband components in the frequency spectra. In addition, with the elasticity and/or viscosity of the surrounding medium increasing, both the nonlinear dynamics and translational motions of bubbles were reduced prominently. This study provides a comprehensive insight into the nonlinear behaviors and acoustic emissions of two interacting cavitation bubbles in viscoelastic media, it may contribute to optimizing and monitoring the cavitation-mediated biomedical applications.


Assuntos
Acústica , Dinâmica não Linear , Substâncias Viscoelásticas , Elasticidade , Substâncias Viscoelásticas/química , Viscosidade
15.
Ultrason Sonochem ; 75: 105608, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119737

RESUMO

Acoustic droplet vaporization (ADV) capable of converting liquid perfluorocarbon (PFC) micro/nanodroplets into gaseous microbubbles has gained much attention due to its medical potentials. However, its physical mechanisms for nanodroplets have not been well understood due to the disappeared superharmonic focusing effect and the prominent Laplace pressure compared to microdroplets, especially for the initial ADV nucleation occurring in a metastable PFC nanodroplet. The classical nucleation theory (CNT) was modified to describe the ADV nucleation via combining the phase-change thermodynamics of perfluoropentane (PFP) and the Laplace pressure effect on PFP nanodroplets. The thermodynamics was exactly predicted by the Redlich-Kwong equation of state (EoS) rather than the van der Waals EoS, based on which the surface tension of the vapor nucleus as a crucial parameter in the CNT was successfully obtained to modify the CNT. Compared to the CNT, the modified CNT eliminated the intrinsic limitations of the CNT, and it predicted a larger nucleation rate and a lower ADV nucleation threshold, which agree much better with experimental results. Furthermore, it indicated that the nanodroplet properties exert very strong influences on the nucleation threshold instead of the acoustic parameters, providing a potential strategy with an appropriate droplet design to reduce the ADV nucleation threshold. This study may contribute to further understanding the ADV mechanism for PFC nanodroplets and promoting its potential theranostic applications in clinical practice.

16.
Int J Nanomedicine ; 16: 3105-3119, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967577

RESUMO

BACKGROUND: Photothermal therapy (PTT) has attracted considerable attention for cancer treatment as it is highly controllable and minimally invasive. Various multifunctional nanosystems have been fabricated in an "all-in-one" form to guide and enhance PTT by integrating imaging and therapeutic functions. However, the complex fabrication of nanosystems and their high cost limit its clinical translation. MATERIALS AND METHODS: Herein, a high efficient "one-for-all" nanodroplet with a simple composition but owning multiple capabilities was developed to achieve ultrasound (US) imaging-guided and cavitation-enhanced PTT. Perfluoropentane (PFP) nanodroplet with a polypyrrole (PPy) shell (PFP@PPy nanodroplet) was synthesized via ultrasonic emulsification and in situ oxidative polymerization. After characterization of the morphology, its photothermal effect, phase transition performance, as well as its capabilities of enhancing US imaging and acoustic cavitation were examined. Moreover, the antitumor efficacy of the combined therapy with PTT and acoustic cavitation via the PFP@PPy nanodroplets was studied both in vitro and in vivo. RESULTS: The nanodroplets exhibited good stability, high biocompatibility, broad optical absorption over the visible and near-infrared (NIR) range, excellent photothermal conversion with an efficiency of 60.1% and activatable liquid-gas phase transition performance. Upon NIR laser and US irradiation, the phase transition of PFP cores into microbubbles significantly enhanced US imaging and acoustic cavitation both in vitro and in vivo. More importantly, the acoustic cavitation enhanced significantly the antitumor efficacy of PTT as compared to PTT alone thanks to the cavitation-mediated cell destruction, which demonstrated a substantial increase in cell detachment, 81.1% cell death in vitro and 99.5% tumor inhibition in vivo. CONCLUSION: The PFP@PPy nanodroplet as a "one-for-all" theranostic agent achieved highly efficient US imaging-guided and cavitation-enhanced cancer therapy, and has considerable potential to provide cancer theranostics in the future.


Assuntos
Meios de Contraste/química , Nanoestruturas/química , Neoplasias Experimentais/diagnóstico por imagem , Terapia Fototérmica/métodos , Ultrassonografia/métodos , Animais , Meios de Contraste/farmacologia , Feminino , Fluorocarbonos/química , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Microbolhas , Nanoestruturas/uso terapêutico , Neoplasias/terapia , Neoplasias Experimentais/terapia , Transição de Fase , Técnicas Fotoacústicas/métodos , Polímeros/química , Pirróis/química , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Ultrason Sonochem ; 53: 59-67, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30559082

RESUMO

Inertial cavitation is crucial for the therapeutic effects of sonodynamic. Therefore, approaches that can induce highly efficient inertial cavitation should be of benefit for sonodynamic effect. Our previous study demonstrated that highly efficient inertial cavitation activity can be achieved through the combinatorial use of a short-pulsed focused ultrasound (SPFU) sequence and perfluorohexane (PFH) nanodroplets. Herein, we applied the SPFU sequence and PFH nanodroplets in sonodynamic. A hydrophobic sonosensitizer, IR780 iodine, was loaded inside denatured bovine serum albumin-shelled PFH (PFH@BSA-IR780) nanodroplets. The sonodynamic efficacy was validated by treating HeLa cervical cancer cells. Under SPFU exposure, PFH@BSA-IR780 nanodroplets were highly effective in promoting reactive oxygen species generation and inducing cancer cell death. A significant decrease in cell viability was achieved within just 10 s. Besides the cytotoxicity of ROS, the mechanical bioeffects of inertial cavitation also led to severe cell death resulting from higher acoustic power or the longer treatment time. The application of the SPFU sequence coupled with PFH@BSA-IR780 nanodroplets is a promising strategy for efficient sonodynamic.

18.
ACS Appl Mater Interfaces ; 10(35): 29251-29259, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30102025

RESUMO

Laser-activated bioprobes with high photothermal conversion efficiency (IRPDA@PFH NDs) based on biocompatible IR-780 doped polydopamine perfluorocarbon nanodroplets (NDs) were developed. When protected by gelatin microspheres, their near-spherical morphologies can be easily observed with transmission electron microscope. Doping IR-780 (3 w/w % of added dopamine hydrochloride) can significantly enhance near-infrared (NIR) absorption and photothermal conversion efficiency to 57.7%. The enhanced NIR absorption and nonradiative relaxation are preferred to stronger photoacoustic (PA) signals and higher PA imaging definition; ultrasound (US) signals also increase more than 2.5 times because of easier phase change of NDs. These bioprobes had sensitive PA/US imaging capability with highly effective substitute utilizations, in which polydopamine was used either as a PA contrast or a photothermal agent. Perfluorocarbon can be used as an US contrast agent and temperature indicator. More importantly, the gray value increments of US increase with temperature in a general range from 35 to 55 °C. Especially, an approximate linear increasing of gray value in the optimized photothermal therapy (PTT) range from 35 °C to 50 °C could be used for the temperature monitoring and control of PTT. During PTT, the heated regions and the extent of photothermal heating can be visualized by US imaging. These findings indicate their great potential for biosensing and PTT monitoring.


Assuntos
Técnicas Biossensoriais/instrumentação , Lasers , Técnicas Fotoacústicas/instrumentação , Ultrassonografia/instrumentação
19.
Ultrason Sonochem ; 47: 141-150, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29678490

RESUMO

In this study, the bioeffects of acoustic droplet vaporization (ADV) on adjacent cells were investigated by evaluating the real-time cell response at the single-cell level in situ, using a combined ultrasound-exposure and optical imaging system. Two imaging modalities, high-speed and fluorescence imaging, were used to observe ADV bubble dynamics and to evaluate the impact on cell membrane permeabilization (i.e., sonoporation) using propidium iodide (PI) uptake as an indicator. The results indicated that ADV mainly led to irreversible rather than reversible sonoporation. Further, the rate of irreversible sonoporation significantly increased with increasing nanodroplet concentration, ultrasound amplitude, and pulse duration. The results suggested that sonoporation is correlated to the rapid formation, expansion, and contraction of ADV bubbles near cells, and strongly depends on ADV bubble size and bubble-to-cell distance when subjected to short ultrasound pulses (1 µs). Moreover, the displacement of ADV bubbles was larger when using a long ultrasound pulse (20 µs), resulting in considerable cell membrane deformation and a more irreversible sonoporation rate. During sonoporation, cell membrane blebbing as a recovery manoeuvre was also investigated, indicating the essential role of Ca2+ influx in the membrane blebbing response. This study has helped us gain further insights into the dynamic behavior of ADV bubbles near cells, ADV bubble-cell interactions, and real-time cell response, which are invaluable in the development of optimal approaches for ADV-associated theranostic applications.


Assuntos
Acústica , Permeabilidade da Membrana Celular , Análise de Célula Única , Ondas Ultrassônicas , Cálcio/metabolismo , Membrana Celular/metabolismo , Células HeLa , Humanos , Transporte de Íons , Microbolhas , Nanoestruturas , Imagem Óptica , Nanomedicina Teranóstica , Volatilização
20.
Ultrason Sonochem ; 45: 57-64, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29705325

RESUMO

A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration.


Assuntos
Fluorocarbonos/química , Ablação por Ultrassom Focalizado de Alta Intensidade , Nanoestruturas , Temperatura , Estudos de Viabilidade , Luminescência , Imagens de Fantasmas , Fotografação , Soroalbumina Bovina/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...