Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 287(43): 36617-22, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22948162

RESUMO

The NLRP3 inflammasome is a key component of the innate immune response to pathogenic infection and tissue damage. It is also involved in the pathogenesis of a number of human diseases, including gouty arthritis, silicosis, atherosclerosis, and type 2 diabetes. The assembly of the NLRP3 inflammasome requires a priming signal derived from pattern recognition or cytokine receptors, followed by a second signal derived from extracellular ATP, pore-forming toxins, or crystalline materials. How these two signals activate the NLRP3 inflammasome is not yet clear. Here, we show that in mouse macrophages, signaling by the pattern recognition receptor TLR4 through MyD88 can rapidly and non-transcriptionally prime NLRP3 by stimulating its deubiquitination. This process is dependent on mitochondrial reactive oxygen species production and can be inhibited by antioxidants. We further show that signaling by ATP can also induce deubiquitination of NLRP3 by a mechanism that is not sensitive to antioxidants. Pharmacological inhibition of NLRP3 deubiquitination completely blocked NLRP3 activation in both mouse and human cells, indicating that deubiquitination of NLRP3 is required for its activation. Our findings suggest that NLRP3 is activated by a two-step deubiquitination mechanism initiated by Toll-like receptor signaling and mitochondrial reactive oxygen species and further potentiated by ATP, which could explain how NLRP3 is activated by diverse danger signals.


Assuntos
Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Ubiquitinação , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Transporte/genética , Células Cultivadas , Humanos , Inflamassomos/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
2.
Immunol Res ; 51(2-3): 227-36, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22038529

RESUMO

RIP1 is an adaptor serine/threonine kinase associated with the signaling complex of death receptors (DRs) including Fas, TNFR1, and TRAIL-Rs which can initiate apoptosis. While DRs are dispensable throughout development, RIP1 deletion results in perinatal lethality. The developmental defect caused by absence of RIP1 remains unexplained. In previous studies, RIP1-deficient hematopoietic progenitors failed to reconstitute the T cell compartment and our recent data indicate a new role for RIP1 in TCR-induced activation of the pro-survival NF-κB pathway. Here, we show that RIP1 is also critical for B cell development. In addition, RIP1(-/-) B cells stimulated through LPS/TLR4 are impaired in NF-κB activation but have no major defect in the Akt pathway. Recently, RIP1 has also emerged as a critical player in necrosis-like death, necroptosis, in various cell lines. We have demonstrated that RIP1 deficiency can reverse the embryonic and T cell proliferation defects in mice lacking FADD, a caspase adaptor protein, which indicates a potential role for RIP1 in mediating in vivo necroptosis. We provide an overview and discussion of the accumulating data revealing insights into the diverse functions of RIP1 in survival and death signaling in lymphocytes.


Assuntos
Proteína de Domínio de Morte Associada a Fas/imunologia , Proteínas Ativadoras de GTPase/imunologia , Linfócitos/imunologia , Necrose/imunologia , Animais , Sobrevivência Celular/genética , Proteína de Domínio de Morte Associada a Fas/genética , Proteínas Ativadoras de GTPase/genética , Humanos , Camundongos , Camundongos Knockout , NF-kappa B/imunologia , Necrose/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais/imunologia
3.
J Clin Invest ; 120(1): 223-41, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20038795

RESUMO

The epigenetic silencing of tumor suppressor genes is a crucial event during carcinogenesis and metastasis. Here, in a human genome-wide survey, we identified scavenger receptor class A, member 5 (SCARA5) as a candidate tumor suppressor gene located on chromosome 8p. We found that SCARA5 expression was frequently downregulated as a result of promoter hypermethylation and allelic imbalance and was associated with vascular invasion in human hepatocellular carcinoma (HCC). Furthermore, SCARA5 knockdown via RNAi markedly enhanced HCC cell growth in vitro, colony formation in soft agar, and invasiveness, tumorigenicity, and lung metastasis in vivo. By contrast, SCARA5 overexpression suppressed these malignant behaviors. Interestingly, SCARA5 was found to physically associate with focal adhesion kinase (FAK) and inhibit the tyrosine phosphorylation cascade of the FAK-Src-Cas signaling pathway. Conversely, silencing SCARA5 stimulated the signaling pathway via increased phosphorylation of certain tyrosine residues of FAK, Src, and p130Cas; it was also associated with activation of MMP9, a tumor metastasis-associated enzyme. Taken together, these data suggest that the plasma membrane protein SCARA5 can contribute to HCC tumorigenesis and metastasis via activation of the FAK signaling pathway.


Assuntos
Carcinoma Hepatocelular/etiologia , Proteína-Tirosina Quinases de Adesão Focal/fisiologia , Neoplasias Hepáticas/etiologia , Receptores Depuradores Classe A/fisiologia , Transdução de Sinais/fisiologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cromossomos Humanos Par 8 , Metilação de DNA , Inativação Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Perda de Heterozigosidade , Camundongos , Camundongos SCID , Invasividade Neoplásica , Regiões Promotoras Genéticas , Receptores Depuradores Classe A/antagonistas & inibidores , Receptores Depuradores Classe A/genética
4.
Mol Cell Biol ; 29(14): 3881-93, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19414600

RESUMO

In Caenorhabditis elegans, the central cell-killing process is essentially controlled by the interplay of four apoptotic factors: EGL-1/BH3-only protein, CED-9/Bcl2, CED-4/Apaf1, and CED-3/caspase. In cells destined to die, EGL-1 binds to CED-9 and results in the release of CED-4 from the mitochondrion-tethered CED-9-CED-4 complex to the perinucleus, which facilitates processing of the CED-3 caspase to cause apoptosis. However, whether additional factors exist to regulate the cell-killing process remains largely unknown. We have identified here WAN-1, the C. elegans ortholog of mammalian adenine nucleotide translocator, as an important cell death regulator. Genetic inactivation of wan-1 significantly suppressed both somatic and germ line cell deaths in C. elegans. Consistently, chemical inhibition of WAN-1 activity also caused strong reduction of germ line apoptosis. WAN-1 localizes to mitochondria and can form complex with both CED-4 and CED-9. Importantly, the cell death initiator EGL-1 can disrupt the interaction between CED-9 and WAN-1. In addition, overexpression of WAN-1 induced ectopic cell killing dependently on the core cell death pathway. These findings suggest that WAN-1 is involved in the central cell-killing process and cooperates with the core cell death machinery to promote programmed cell death in C. elegans.


Assuntos
Apoptose/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Translocases Mitocondriais de ADP e ATP/fisiologia , Animais , Apoptose/efeitos dos fármacos , Atractilosídeo/farmacologia , Ácido Bongcréquico/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/fisiologia , Caspases/genética , Caspases/fisiologia , Linhagem Celular , Deleção de Genes , Expressão Gênica , Genes de Helmintos , Células Germinativas/citologia , Células Germinativas/metabolismo , Humanos , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/antagonistas & inibidores , Translocases Mitocondriais de ADP e ATP/genética , Complexos Multiproteicos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Interferência de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...