Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 118(4): 1624-1635, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33492694

RESUMO

Alcohol dehydrogenases (ADHs) play key roles in the production of various chemical precursors that are essential in pharmaceutical and fine chemical industries. To achieve a practical application of ADHs in industrial processes, tailoring enzyme properties through rational design or directed evolution is often required. Here, we developed a secretion-based dual fluorescence assay (SDFA) for high-throughput screening of ADHs. In SDFA, an ADH of interest is fused to a mutated superfolder green fluorescent protein (MsfGFP), which could result in the secretion of the fusion protein to culture broth. After a simple centrifugation step to remove the cells, the supernatant can be directly used to measure the activity of ADH based on a red fluorescence signal, whose increase is coupled to the formation of NADH (a redox cofactor of ADHs) in the reaction. SDFA allows easy quantification of ADH concentration based on the green fluorescence signal of MsfGFP. This feature is useful in determining specific activity and may improve screening accuracy. Out of five ADHs we have tested with SDFA, four ADHs can be secreted and characterized. We successfully screened a combinatorial library of an ADH from Pichia finlandica and identified a variant with a 197-fold higher kcat /km value toward (S)-2-octanol compared to its wild type.


Assuntos
Álcool Desidrogenase , Proteínas Fúngicas , Ensaios de Triagem em Larga Escala , Saccharomycetales , Álcool Desidrogenase/análise , Álcool Desidrogenase/genética , Fluorescência , Proteínas Fúngicas/análise , Proteínas Fúngicas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Saccharomycetales/enzimologia , Saccharomycetales/genética
2.
Appl Microbiol Biotechnol ; 103(15): 6119-6128, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31165224

RESUMO

Biocatalytic reduction catalyzed by aldo-keto reductases (AKRs) is a valuable approach for asymmetric synthesis of chiral alcohols. In this study, four novel aldo-keto reductases with significant activity and stereoselectivity toward a variety of α-keto esters and halogen-substituted acetophenones were identified by genome mining. Through analysis of the crystal structure and multiple-sequence alignment of the starting AKR YvgN from Bacillus subtilis, residues F25 and W113 were proposed as the key positions that might control the stereoselectivity of YvgN. F25S and F25S/W113F variants of YvgN were able to improve its activity and stereoselectivity toward some α-keto ester compounds and halogen-substituted acetophenone derivatives. In addition, similar enhancement of catalytic activity and stereoselectivity was also found in the other three AKRs with corresponding mutations of starting YvgN.


Assuntos
Acetofenonas/metabolismo , Aldo-Ceto Redutases/metabolismo , Bacillus subtilis/enzimologia , Ésteres/metabolismo , Aldo-Ceto Redutases/química , Aldo-Ceto Redutases/genética , Bacillus subtilis/genética , Sítios de Ligação , Biologia Computacional , Cristalografia por Raios X , Alinhamento de Sequência , Especificidade por Substrato
3.
Org Biomol Chem ; 15(35): 7374-7379, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28848953

RESUMO

Biocatalysis has been recently emerging as a promising alternative to traditional chemical synthesis because of its "green" characteristics and comparable selectivities, which accord with the concept of sustainable development and demand for asymmetric synthesis. In this study, whole-cell biocatalysts containing glucose dehydrogenase (GDH) and Candida glabrata ketoreductase 1 (CgKR1) variants were constructed. These biocatalysts were applied to the reduction of benzo-fused cyclic ketones and showed good to high activities and enantioselectivities. Particularly, CgKR1 variants displayed high activities (90.6%-98.4% conversions) and enantioselectivities (>99.9% ee) towards 5a, a key intermediate of ladostigil (TV3326). Based on these results, a chemoenzymatic synthesis of (S)-5b was developed by using biocatalytic asymmetric reduction as a key step, giving the product with a total yield of 34.0% and 99.9% ee.


Assuntos
Oxirredutases do Álcool/metabolismo , Candida glabrata/enzimologia , Indanos/metabolismo , Cetonas/metabolismo , Engenharia de Proteínas , Indanos/química , Cetonas/química , Estrutura Molecular , Oxirredução , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...