Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 45(10): 12304-12320, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37216258

RESUMO

Computational color constancy is an important component of Image Signal Processors (ISP) for white balancing in many imaging devices. Recently, deep convolutional neural networks (CNN) have been introduced for color constancy. They achieve prominent performance improvements comparing with those statistics or shallow learning-based methods. However, the need for a large number of training samples, a high computational cost and a huge model size make CNN-based methods unsuitable for deployment on low-resource ISPs for real-time applications. In order to overcome these limitations and to achieve comparable performance to CNN-based methods, an efficient method is defined for selecting the optimal simple statistics-based method (SM) for each image. To this end, we propose a novel ranking-based color constancy method (RCC) that formulates the selection of the optimal SM method as a label ranking problem. RCC designs a specific ranking loss function, and uses a low rank constraint to control the model complexity and a grouped sparse constraint for feature selection. Finally, we apply the RCC model to predict the order of the candidate SM methods for a test image, and then estimate its illumination using the predicted optimal SM method (or fusing the results estimated by the top k SM methods). Comprehensive experiment results show that the proposed RCC outperforms nearly all the shallow learning-based methods and achieves comparable performance to (sometimes even better performance than) deep CNN-based methods with only 1/2000 of the model size and training time. RCC also shows good robustness to limited training samples and good generalization crossing cameras. Furthermore, to remove the dependence on the ground truth illumination, we extend RCC to obtain a novel ranking-based method without ground truth illumination (RCC_NO) that learns the ranking model using simple partial binary preference annotations provided by untrained annotators rather than experts. RCC_NO also achieves better performance than the SM methods and most shallow learning-based methods with low costs of sample collection and illumination measurement.

2.
Methods Mol Biol ; 1258: 371-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25447876

RESUMO

Besides misfolded proteins, which still retain the capacity to fold into uniquely defined structures but are misled to "off-pathway" aggregation, there exists a group of proteins which are unrefoldable and insoluble in buffers. Previously no general method was available to solubilize them and consequently their solution conformations could not be characterized. Recently, we discovered that these insoluble proteins could in fact be solubilized in pure water. Circular dichroism (CD) spectroscopy and nuclear magnetic resonance (NMR) characterization led to their classification into three groups, all of which lack the tight tertiary packing and consequently anticipated to unavoidably aggregate in vivo with ~150 mM ions, thus designated as "intrinsically insoluble proteins (IIPs)." It appears that eukaryotic genomes contain many "IIP," which also have a potential to interact with membranes to trigger neurodegenerative diseases. In this chapter, we provide a detailed procedure to express and purify these proteins, followed by CD and NMR spectroscopy characterization of their conformation and interaction with dodecylphosphocholine (DPC).


Assuntos
Proteínas/química , Animais , Dicroísmo Circular/métodos , Humanos , Espectroscopia de Ressonância Magnética , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Conformação Proteica , Dobramento de Proteína
3.
ACS Chem Biol ; 10(2): 372-8, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25334011

RESUMO

Additional to involvement in diverse physiological and pathological processes such as axon regeneration, synaptic plasticity, and cancers, EphA4 receptor has been recently identified as the only amyotrophic lateral sclerosis (ALS) modifier. Previously, we found that two small molecules bind the same EphA4 channel at almost equivalent affinities but mysteriously trigger opposite signaling outputs: one activated but another inhibited. Here, we determined the solution structure of the 181-residue EphA4 LBD, which represents the first for 16 Eph receptors. Further NMR dynamic studies deciphered that the agonistic and antagonistic effects of two small molecules are dynamically driven, which are achieved by oppositely modulating EphA4 dynamics. Consequently, in design of drugs to target EphA4, the dynamic requirement also needs to be satisfied in addition to the classic criteria. For example, to increase the survival of ALS patients by inhibiting EphA4, the drugs must enhance, or at least not suppress, the EphA4 dynamics.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Receptor EphA4/agonistas , Receptor EphA4/antagonistas & inibidores , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína
4.
Proc Natl Acad Sci U S A ; 111(52): 18619-24, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25503365

RESUMO

Transactivation response element (TAR) DNA-binding protein 43 (TDP-43) is the principal component of ubiquitinated inclusions characteristic of most forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia-frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP), as well as an increasing spectrum of other neurodegenerative diseases. Previous structural and functional studies on TDP-43 have been mostly focused on its recognized domains. Very recently, however, its extreme N terminus was identified to be a double-edged sword indispensable for both physiology and proteinopathy, but thus far its structure remains unknown due to the severe aggregation. Here as facilitated by our previous discovery that protein aggregation can be significantly minimized by reducing salt concentrations, by circular dichroism and NMR spectroscopy we revealed that the TDP-43 N terminus encodes a well-folded structure in concentration-dependent equilibrium with its unfolded form. Despite previous failure in detecting any sequence homology to ubiquitin, the folded state was determined to adopt a novel ubiquitin-like fold by the CS-Rosetta program with NMR chemical shifts and 78 unambiguous long-range nuclear Overhauser effect (NOE) constraints. Remarkably, this ubiquitin-like fold could bind ssDNA, and the binding shifted the conformational equilibrium toward reducing the unfolded population. To the best of our knowledge, the TDP-43 N terminus represents the first ubiquitin-like fold capable of directly binding nucleic acid. Our results provide a molecular mechanism rationalizing the functional dichotomy of TDP-43 and might also shed light on the formation and dynamics of cellular ribonucleoprotein granules, which have been recently linked to ALS pathogenesis. As a consequence, one therapeutic strategy for TDP-43-causing diseases might be to stabilize its ubiquitin-like fold by ssDNA or designed molecules.


Assuntos
Esclerose Lateral Amiotrófica , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Desdobramento de Proteína , Dicroísmo Circular , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Agregação Patológica de Proteínas , Ligação Proteica , Estrutura Terciária de Proteína
5.
Proc Natl Acad Sci U S A ; 111(49): E5282-91, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422469

RESUMO

FAT10 (HLA-F-adjacent transcript 10) is a ubiquitin-like modifier that is commonly overexpressed in various tumors. It was found to play a role in mitotic regulation through its interaction with mitotic arrest-deficient 2 (MAD2). Overexpression of FAT10 promotes tumor growth and malignancy. Here, we identified the MAD2-binding interface of FAT10 to be located on its first ubiquitin-like domain whose NMR structure thus was determined. We further proceeded to demonstrate that disruption of the FAT10-MAD2 interaction through mutation of specific MAD2-binding residues did not interfere with the interaction of FAT10 with its other known interacting partners. Significantly, ablation of the FAT10-MAD2 interaction dramatically limited the promalignant capacity of FAT10, including promoting tumor growth in vivo and inducing aneuploidy, proliferation, migration, invasion, and resistance to apoptosis in vitro. Our results strongly suggest that the interaction of FAT10 with MAD2 is a key mechanism underlying the promalignant property of FAT10 and offer prospects for the development of anticancer strategies.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Mad2/metabolismo , Neoplasias/metabolismo , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Animais , Ciclo Celular , Proliferação de Células , Separação Celular , Instabilidade Cromossômica , Progressão da Doença , Citometria de Fluxo , Perfilação da Expressão Gênica , Células HCT116 , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
6.
PLoS One ; 8(9): e74040, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086308

RESUMO

The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions with 9 ephrin-A and ephrin-B ligands initiate bidirectional signals controlling many physiological and pathological processes. Most interactions occur between receptor and ephrins of the same class, and only EphA4 can bind all A and B ephrins. To understand the structural and dynamic principles that enable Eph receptors to utilize the same jellyroll ß-sandwich fold to bind ephrins, the VAPB-MSP domain, peptides and small molecules, we have used crystallography, NMR and molecular dynamics (MD) simulations to determine the first structure and dynamics of the EphA5 ligand-binding domain (LBD), which only binds ephrin-A ligands. Unexpectedly, despite being unbound, the high affinity ephrin-binding pocket of EphA5 resembles that of other Eph receptors bound to ephrins, with a helical conformation over the J-K loop and an open pocket. The openness of the pocket is further supported by NMR hydrogen/deuterium exchange data and MD simulations. Additionally, the EphA5 LBD undergoes significant picosecond-nanosecond conformational exchanges over the loops, as revealed by NMR and MD simulations, but lacks global conformational exchanges on the microsecond-millisecond time scale. This is markedly different from the EphA4 LBD, which shares 74% sequence identity and 87% homology. Consequently, the unbound EphA5 LBD appears to comprise an ensemble of open conformations that have only small variations over the loops and appear ready to bind ephrin-A ligands. These findings show how two proteins with high sequence homology and structural similarity are still able to achieve distinctive binding specificities through different dynamics, which may represent a general mechanism whereby the same protein fold can serve for different functions. Our findings also suggest that a promising strategy to design agonists/antagonists with high affinity and selectivity might be to target specific dynamic states of the Eph receptor LBDs.


Assuntos
Receptor EphA5/metabolismo , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Primers do DNA , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Receptor EphA5/química
7.
Biochem Biophys Res Commun ; 431(3): 398-403, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23333387

RESUMO

P56S mutation on VAPB MSP domain causes a familial ALS, characteristic of severe aggregation both in vivo and in vitro. We previously showed that P56S rendered the MSP domain to be predominantly disordered in water. Unexpectedly, here we reveal that P56S-MSP transforms into a highly helical conformation in a membrane environment. This chameleon transformation is shared by a splicing variant VAPB-3 with a truncated MSP domain, which is also highly disordered and buffer insoluble as demonstrated here by NMR. Our discovery provides a mechanism for ALS-causing VAPB mutants/variants to gain novel functions such as to mediate ER structure before significant accumulation of aggregates occurs.


Assuntos
Processamento Alternativo , Esclerose Lateral Amiotrófica/genética , Lipídeos/química , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Clonagem Molecular , Humanos , Mutação , Ressonância Magnética Nuclear Biomolecular , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
F1000Res ; 2: 221, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25254094

RESUMO

Paradoxically, aggregation of specific proteins is characteristic of many human diseases and aging, yet aggregates have been found to be unnecessary for initiating pathogenesis. Here we determined the NMR topology and dynamics of a helical mutant in a membrane environment transformed from the 125-residue cytosolic all-ß MSP by the ALS-causing P56S mutation. Unexpectedly, despite its low hydrophobicity, the P56S major sperm protein (MSP) domain becomes largely embedded in the membrane environment with high backbone rigidity. Furthermore it is composed of five helices with amphiphilicity comparable to those of the partly-soluble membrane toxin mellitin and α-synuclein causing Parkinson's disease. Consequently, the mechanism underlying this chameleon transformation becomes clear: by disrupting the specific tertiary interaction network stabilizing the native all-ß MSP fold to release previously-locked amphiphilic segments, the P56S mutation acts to convert the classic MSP fold into a membrane-active protein that is fundamentally indistinguishable from mellitin and α-synuclein which are disordered in aqueous solution but spontaneously partition into membrane interfaces driven by hydrogen-bond energetics gained from forming α-helix in the membrane environments. As segments with high amphiphilicity exist in all proteins, our study successfully resolves the paradox by deciphering that the proteins with a higher tendency to aggregate have a stronger potential to partition into membranes through the same mechanism as α-synuclein to initially attack membranes to trigger pathogenesis without needing aggregates. This might represent the common first step for various kinds of aggregated proteins to trigger familiar, sporadic and aging diseases. Therefore the homeostasis of aggregated proteins in vivo is the central factor responsible for a variety of human diseases including aging. The number and degree of the membrane attacks by aggregated proteins may act as an endogenous clock to count down the aging process. Consequently, a key approach to fight against them is to develop strategies and agents to maintain or even enhance the functions of the degradation machineries.

9.
PLoS One ; 7(8): e42120, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916121

RESUMO

During tumor progression, EphA2 receptor can gain ligand-independent pro-oncogenic functions due to Akt activation and reduced ephrin-A ligand engagement. The effects can be reversed by ligand stimulation, which triggers the intrinsic tumor suppressive signaling pathways of EphA2 including inhibition of PI3/Akt and Ras/ERK pathways. These observations argue for development of small molecule agonists for EphA2 as potential tumor intervention agents. Through virtual screening and cell-based assays, we report here the identification and characterization of doxazosin as a novel small molecule agonist for EphA2 and EphA4, but not for other Eph receptors tested. NMR studies revealed extensive contacts of doxazosin with EphA2/A4, recapitulating both hydrophobic and electrostatic interactions recently found in the EphA2/ephrin-A1 complex. Clinically used as an α1-adrenoreceptor antagonist (Cardura®) for treating hypertension and benign prostate hyperplasia, doxazosin activated EphA2 independent of α1-adrenoreceptor. Similar to ephrin-A1, doxazosin inhibited Akt and ERK kinase activities in an EphA2-dependent manner. Treatment with doxazosin triggered EphA2 receptor internalization, and suppressed haptotactic and chemotactic migration of prostate cancer, breast cancer, and glioma cells. Moreover, in an orthotopic xenograft model, doxazosin reduced distal metastasis of human prostate cancer cells and prolonged survival in recipient mice. To our knowledge, doxazosin is the first small molecule agonist of a receptor tyrosine kinase that is capable of inhibiting malignant behaviors in vitro and in vivo.


Assuntos
Metástase Neoplásica , Neoplasias da Próstata/patologia , Receptor EphA2/agonistas , Biocatálise , Doxazossina/farmacologia , Humanos , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Masculino , Modelos Moleculares , Neoplasias da Próstata/enzimologia , Receptores Adrenérgicos alfa 1/efeitos dos fármacos
10.
PLoS One ; 7(7): e40341, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815741

RESUMO

Nearly 200 million people are infected by hepatitis C virus (HCV) worldwide. For replicating the HCV genome, the membrane-associated machinery needs to be formed by both HCV non-structural proteins (including NS5B) and human host factors such as VAPB. Recently, the 99-residue VAPC, a splicing variant of VAPB, was demonstrated to inhibit HCV replication via binding to NS5B, thus acting as an endogenous inhibitor of HCV infection. So far, the structure of VAPC remains unknown, and its interaction with NS5B has not been biophysically characterized. In this study, we conducted extensive CD and NMR investigations on VAPC which led to several striking findings: 1) although the N-terminal 70 residues are identical in VAPC and VAPB, they constitute the characteristic ß-barrel MSP fold in VAPB, while VAPC is entirely unstructured in solution, only with helical-like conformations weakly populated. 2) VAPC is indeed capable of binding to NS5B, with an average dissociation constant (Kd) of ∼20 µM. Intriguingly, VAPC remains dynamic even in the complex, suggesting that the VAPC-NS5B is a "fuzzy complex". 3) NMR mapping revealed that the major binding region for NS5B is located over the C-terminal half of VAPC, which is composed of three discrete clusters, of which only the first contains the region identical in VAPC and VAPB. The second region containing ∼12 residues appears to play a key role in binding since mutation of 4 residues within this region leads to almost complete loss of the binding activity. 4) A 14-residue mimetic, VAPC-14 containing the second region, only has a ∼3-fold reduction of the affinity. Our study not only provides critical insights into how a human factor mediates the formation of the HCV replication machinery, but also leads to design of VAPC-14 which may be further used to explore the function of VAPC and to develop anti-HCV molecules.


Assuntos
Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Transporte Vesicular/farmacologia , Proteínas não Estruturais Virais/química
11.
PLoS One ; 7(6): e39261, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22720086

RESUMO

Hepatitis C virus (HCV) affects nearly 200 million people worldwide and is a leading factor for serious chronic liver diseases. For replicating HCV genome, the membrane-associated replication machinery needs to be formed by both HCV non-structural proteins including NS5A and human host factors. Recently NS5A has been identified to bind ER-anchored human VAP proteins and consequently this interaction may serve as a novel target for design of anti-HCV drugs. So far no biophysical characterization of this interaction has been reported. Here, we dissected the 243-residue VAPB into 4 and 447-residue NS5A into 10 fragments, followed by CD and NMR characterization of their structural properties. Subsequently, binding interactions between these fragments have been extensively assessed by NMR HSQC titration which is very powerful in detecting even very weak binding. The studies lead to three important findings: 1). a "fuzzy complex" is formed between the intrinsically-unstructured third domain (D3) of NS5A and the well-structured MSP domain of VAPB, with an average dissociation constant (Kd) of ~5 µM. 2). The binding-important residues on both NS5A-D3 and VAPB-MSP have been successfully mapped out, which provided experimental constraints for constructing the complex structure. In the complex, unstructured D3 binds to three surface pockets on one side of the MSP structure. Interestingly, two ALS-causing mutations T46I and P56S are also located on the D3-MSP interface. Moreover, NS5A-D3, FFAT-containing proteins and EphA4 appear to have overlapped binding interfaces on the MSP domain. 3). NS5A-D3 has been experimentally confirmed to competes with EphA4 in binding to the MSP domain, and T46I mutation of MSP dramatically abolishes its binding ability to D3. Our study not only provides essential foundation for further deciphering structure and function of the HCV replication machinery, but may also shed light on rationalizing a recent observation that a chronic HCV patient surprisingly developed ALS-like syndrome.


Assuntos
Mutação , Proteínas de Transporte Vesicular/química , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Dicroísmo Circular , Humanos , Modelos Teóricos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas de Transporte Vesicular/genética , Proteínas não Estruturais Virais/genética
12.
Biochem J ; 445(1): 47-56, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22489865

RESUMO

The EphA4 receptor tyrosine kinase interacts with ephrin ligands to regulate many processes, ranging from axon guidance and nerve regeneration to cancer malignancy. Thus antagonists that inhibit ephrin binding to EphA4 could be useful for a variety of research and therapeutic applications. In the present study we characterize the binding features of three antagonistic peptides (KYL, APY and VTM) that selectively target EphA4 among the Eph receptors. Isothermal titration calorimetry analysis demonstrated that all three peptides bind to the ephrin-binding domain of EphA4 with low micromolar affinity. Furthermore, the effects of a series of EphA4 mutations suggest that the peptides interact in different ways with the ephrin-binding pocket of EphA4. Chemical-shift changes observed by NMR spectroscopy upon binding of the KYL peptide involve many EphA4 residues, consistent with extensive interactions and possibly receptor conformational changes. Additionally, systematic replacement of each of the 12 amino acids of KYL and VTM identify the residues critical for EphA4, binding. The peptides exhibit a long half-life in cell culture medium which, with their substantial binding affinity and selectivity for EphA4, makes them excellent research tools to modulate EphA4 function.


Assuntos
Efrinas/metabolismo , Fragmentos de Peptídeos/farmacologia , Receptor EphA4/antagonistas & inibidores , Receptor EphA4/metabolismo , Animais , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Calorimetria , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Processamento de Imagem Assistida por Computador , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Conformação Proteica , Pontos Quânticos , Receptor EphA4/genética , Transdução de Sinais
13.
BMC Biophys ; 5: 2, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22277260

RESUMO

BACKGROUND: The role of dynamics in protein functions including signal transduction is just starting to be deciphered. Eph receptors with 16 members divided into A- and B- subclasses are respectively activated by 9 A- and B-ephrin ligands. EphA4 is the only receptor capable of binding to all 9 ephrins and small molecules with overlapped interfaces. RESULTS: We first determined the structures of the EphA4 ligand binding domain (LBD) in two crystals of P1 space group. Noticeably, 8 EphA4 molecules were found in one asymmetric unit and consequently from two crystals we obtained 16 structures, which show significant conformational variations over the functionally critical A-C, D-E, G-H and J-K loops. The 16 new structures, together with previous 9 ones, can be categorized into two groups: closed and open forms which resemble the uncomplexed and complexed structures of the EphA4 LBD respectively. To assess whether the conformational diversity over the loops primarily results from the intrinsic dynamics, we initiated 30-ns molecular dynamics (MD) simulations for both closed and open forms. The results indicate that the loops do have much higher intrinsic dynamics, which is further unravelled by NMR H/D exchange experiments. During simulations, the open form has the RMS deviations slightly larger than those of the closed one, suggesting the open form may be less stable in the absence of external contacts. Furthermore, no obvious exchange between two forms is observed within 30 ns, implying that they are dynamically separated. CONCLUSIONS: Our study provides the first experimental and computational result revealing that the intrinsic dynamics are most likely underlying the conformational diversity observed for the EphA4 LBD loops mediating the binding affinity and specificity. Interestingly, the open conformation of the EphA4 LBD is slightly unstable in the absence of it natural ligand ephrins, implying that the conformational transition from the closed to open has to be driven by the high-affinity interaction with ephrins because the weak interaction with small molecule was found to be insufficient to trigger the transition. Our results therefore highlight the key role of protein dynamics in Eph-ephrin signalling and would benefit future design of agonists/antagonists targeting Eph receptors.

14.
PLoS One ; 6(11): e27072, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22069488

RESUMO

T46I is the second mutation on the hVAPB MSP domain which was recently identified from non-Brazilian kindred to cause a familial amyotrophic lateral sclerosis (ALS). Here using CD, NMR and molecular dynamics (MD) simulations, we characterized the structure, stability, dynamics and binding capacity of the T46I-MSP domain. The results reveal: 1) unlike P56S which we previously showed to completely eliminate the native MSP structure, T46I leads to no significant disruption of the native secondary and tertiary structures, as evidenced from its far-UV CD spectrum, as well as Cα and Cß NMR chemical shifts. 2) Nevertheless, T46I does result in a reduced thermodynamic stability and loss of the cooperative urea-unfolding transition. As such, the T46I-MSP domain is more prone to aggregation than WT at high protein concentrations and temperatures in vitro, which may become more severe in the crowded cellular environments. 3) T46I only causes a 3-fold affinity reduction to the Nir2 peptide, but a significant elimination of its binding to EphA4. 4) EphA4 and Nir2 peptide appear to have overlapped binding interfaces on the MSP domain, which strongly implies that two signaling networks may have a functional interplay in vivo. 5) As explored by both H/D exchange and MD simulations, the MSP domain is very dynamic, with most loop residues and many residues on secondary structures highly fluctuated or/and exposed to bulk solvent. Although T46I does not alter overall dynamics, it does trigger increased dynamics of several local regions of the MSP domain which are implicated in binding to EphA4 and Nir2 peptide. Our study provides the structural and dynamic understanding of the T46I-causing ALS; and strongly highlights the possibility that the interplay of two signaling networks mediated by the FFAT-containing proteins and Eph receptors may play a key role in ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica/etiologia , Mutação/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Dicroísmo Circular , Proteínas do Olho/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptor EphA4/metabolismo , Termodinâmica
15.
FEBS Lett ; 585(19): 3126-32, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21907714

RESUMO

Insoluble proteins dissolved in unsalted water appear to have no well-folded tertiary structures. This raises a fundamental question as to whether being unstructured is due to the absence of salt ions. To address this issue, we solubilized the insoluble ephrin-B2 cytoplasmic domain in unsalted water and first confirmed using NMR spectroscopy that it is only partially folded. Using NMR HSQC titrations with 14 different salts, we further demonstrate that the addition of salt triggers no significant folding of the protein within physiologically relevant ion concentrations. We reveal however that their 8 anions bind to the ephrin-B2 protein with high affinity and specificity at biologically-relevant concentrations. Interestingly, the binding is found to be both salt- and residue-specific.


Assuntos
Efrina-B2/química , Efrina-B2/metabolismo , Íons/química , Íons/metabolismo , Sais/química , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Soluções/química , Termodinâmica , Água/química
16.
Chem Biol Drug Des ; 78(4): 667-78, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21791013

RESUMO

Eph receptor tyrosine kinases and ephrin ligands control many physiological and pathological processes, and molecules interfering with their interaction are useful probes to elucidate their complex biological functions. Moreover, targeting Eph receptors might enable new strategies to inhibit cancer progression and pathological angiogenesis as well as promote nerve regeneration. Because our previous work suggested the importance of the salicylic acid group in antagonistic small molecules targeting Eph receptors, we screened a series of salicylic acid derivatives to identify novel Eph receptor antagonists. This identified a disalicylic acid-furanyl derivative that inhibits ephrin-A5 binding to EphA4 with an IC(50) of 3 µm in ELISAs. This compound, which appears to bind to the ephrin-binding pocket of EphA4, also targets several other Eph receptors. Furthermore, it inhibits EphA2 and EphA4 tyrosine phosphorylation in cells stimulated with ephrin while not affecting phosphorylation of EphB2, which is not a target receptor. In endothelial cells, the disalicylic acid-furanyl derivative inhibits EphA2 phosphorylation in response to TNFα and capillary-like tube formation on Matrigel, two effects that depend on EphA2 interaction with endogenous ephrin-A1. These findings suggest that salicylic acid derivatives could be used as starting points to design new small molecule antagonists of Eph receptors.


Assuntos
Efrinas/metabolismo , Ligação Proteica/efeitos dos fármacos , Receptores da Família Eph/antagonistas & inibidores , Receptores da Família Eph/metabolismo , Salicilatos/química , Salicilatos/farmacologia , Animais , Sítios de Ligação , Linhagem Celular , Haplorrinos , Humanos , Camundongos , Modelos Moleculares , Receptores da Família Eph/química
17.
RNA ; 16(3): 474-81, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20106953

RESUMO

Dicer or Dicer-like (DCL) protein is a catalytic component involved in microRNA (miRNA) or small interference RNA (siRNA) processing pathway, whose fragment structures have been partially solved. However, the structure and function of the unique DUF283 domain within dicer is largely unknown. Here we report the first structure of the DUF283 domain from the Arabidopsis thaliana DCL4. The DUF283 domain adopts an alpha-beta-beta-beta-alpha topology and resembles the structural similarity to the double-stranded RNA-binding domain. Notably, the N-terminal alpha helix of DUF283 runs cross over the C-terminal alpha helix orthogonally, therefore, N- and C-termini of DUF283 are in close proximity. Biochemical analysis shows that the DUF283 domain of DCL4 displays weak dsRNA binding affinity and specifically binds to double-stranded RNA-binding domain 1 (dsRBD1) of Arabidopsis DRB4, whereas the DUF283 domain of DCL1 specifically binds to dsRBD2 of Arabidopsis HYL1. These data suggest a potential functional role of the Arabidopsis DUF283 domain in target selection in small RNA processing.


Assuntos
Arabidopsis/química , Ribonuclease III/química , Sítios de Ligação , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , RNA de Cadeia Dupla/química
18.
J Biol Chem ; 285(1): 644-54, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19875447

RESUMO

EphA and EphB receptors preferentially bind ephrin-A and ephrin-B ligands, respectively, but EphA4 is exceptional for its ability to bind all ephrins. Here, we report the crystal structure of the EphA4 ligand-binding domain in complex with ephrin-B2, which represents the first structure of an EphA-ephrin-B interclass complex. A loose fit of the ephrin-B2 G-H loop in the EphA4 ligand-binding channel is consistent with a relatively weak binding affinity. Additional surface contacts also exist between EphA4 residues Gln(12) and Glu(14) and ephrin-B2. Mutation of Gln(12) and Glu(14) does not cause significant structural changes in EphA4 or changes in its affinity for ephrin-A ligands. However, the EphA4 mutant has approximately 10-fold reduced affinity for ephrin-B ligands, indicating that the surface contacts are critical for interclass but not intraclass ephrin binding. Thus, EphA4 uses different strategies to bind ephrin-A or ephrin-B ligands and achieve binding promiscuity. NMR characterization also suggests that the contacts of Gln(12) and Glu(14) with ephrin-B2 induce dynamic changes throughout the whole EphA4 ligand-binding domain. Our findings shed light on the distinctive features that enable the remarkable ligand binding promiscuity of EphA4 and suggest that diverse strategies are needed to effectively disrupt different Eph-ephrin complexes.


Assuntos
Efrina-B2/química , Efrina-B2/metabolismo , Receptor EphA4/química , Receptor EphA4/metabolismo , Calorimetria , Linhagem Celular , Cristalografia por Raios X , Humanos , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Soluções , Especificidade por Substrato , Termodinâmica
19.
Biochem Biophys Res Commun ; 383(4): 433-9, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19364499

RESUMO

RTN3 can recruit Fas-associated death domain (FADD), thus initiating the ER-stress activated apoptosis. It also interacts with the beta-secretase and its aggregation is critically associated with Alzheimer's disease. Here, we first investigated the solution conformation of hRTN3, subsequently characterized its binding with hFADD. The results reveal: (1) both hRTN3 N- and C-termini are intrinsically unstructured. Nevertheless, the C-terminus contains two short helix-populated regions. (2) The unstructured hRTN3 C-terminus can bind to hFADD as shown by ITC. Further NMR investigation successfully identified the binding involved hRTN3 residues. (3) Although upon hRTN3-binding, the perturbed hFADD residues were distributed over the whole sequence, the majority of the significantly perturbed are over its death effector domain, very different from the previously observed binding mode for FADD. This study also implies a possible linkage between Alzheimer's disease and ER-stress activated apoptosis.


Assuntos
Proteínas de Transporte/metabolismo , Retículo Endoplasmático/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Apoptose , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteína de Domínio de Morte Associada a Fas/química , Proteína de Domínio de Morte Associada a Fas/genética , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica/genética
20.
Biochemistry ; 47(51): 13647-58, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19035836

RESUMO

Nogo-A has been extensively demonstrated to play key roles in inhibiting central nervous system regeneration, regulating endoplasmic reticulum formation, and maintaining the integrity of the neuromuscular junction. In this study, an E3 ubiquitin ligase WWP1 was first identified to be a novel interacting partner for Nogo-A both in vitro and in vivo. By using CD, ITC, and NMR, we have further conducted extensive studies on all four WWP1 WW domains and their interactions with a Nogo-A peptide carrying the only PPxY motif. The results lead to several striking findings. (1) Despite containing an unstructured region, the 186-residue WWP1 fragment containing all four WW domains is able to interact with the Nogo-A(650-666) peptide with a high affinity, with a dissociation constant (K(d)) of 1.68 microM. (2) Interestingly, four isolated WW domains show differential structural properties in the free states. WW1 and WW2 are only partially folded, while WW4 is well-folded. Nevertheless, they all become well-folded upon binding to Nogo-A(650-666), with K(d) values ranging from 1.03 to 3.85 microM. (3) The solution structure of the best-folded WW4 domain is determined, and the binding-perturbed residues were derived for both WW4 and Nogo-A(650-666) by NMR HSQC titrations. Moreover, on the basis of the NMR data, the complex model is constructed by HADDOCK 2.0. This study provides rationales as well as a template Nogo-A(650-666) for further design of molecules to intervene in the WWP1-Nogo-A interaction which may regulate the Nogo-A protein level by controlling its ubiquitination.


Assuntos
Sistema Nervoso Central/metabolismo , Proteínas da Mielina/química , Ubiquitina-Proteína Ligases/química , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Glutationa Transferase/metabolismo , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Conformação Molecular , Dados de Sequência Molecular , Proteínas da Mielina/metabolismo , Proteínas Nogo , Ligação Proteica , Homologia de Sequência de Aminoácidos , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...