Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Oncol ; 2022: 7762708, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199797

RESUMO

Background: Endometrial cancer is associated with a high mortality rate, which warrants the identification of novel diagnostic markers and therapeutic targets. The aim of this study is to evaluate the role of SNORD15B in the development of endometrial cancer and explore the potential underlying mechanisms. Methods: Bioinformatics was used to analyze the expression level and prognostic relevance of SNORD15B in endometrial cancer. The Ishikawa and HEC-1B cells were respectively transfected with SNORD15B expression plasmid and an antisense oligonucleotide, or the corresponding empty vector and a nonspecific sequence. The malignant phenotype of the suitably transfected cells was assessed by standard in vitro functional assays and the establishment of in vivo xenografts. The expression levels of the specific markers were analyzed with RT-qPCR and western blotting. The subcellular localization of P53 was determined by analyzing the nuclear and cytoplasmic fractions. RIP, Co-IP, and immunohistochemistry were performed as per standard protocols. Results: SNORD15B was overexpressed in the endometrial cancer tissues and correlated to a poor prognosis. Ectopic expression of SNORD15B in Ishikawa cells inhibited apoptosis, increased the proliferation, invasion, and migration in vitro, and enhanced their tumorigenicity in vivo. SNORD15B overexpression also upregulated TRIM25 and accelerated P53 accumulation in the cytoplasm of the endometrial cancer cells. Conclusion: SNORD15B functions as an oncogene in endometrial cancer by targeting the TRIM25/P53 complex and blocking the nuclear translocation of P53.

2.
Cell Death Discov ; 7(1): 388, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907180

RESUMO

A large number of small non-coding RNAs derived from tRNAs, called tRNA-derived small RNA (tsRNAs), have been identified by high-throughput RNA sequencing of cell lines. Further research has revealed that they are not produced via random tRNA degradation, but through degradation by specific nuclease cleavages, such as Elac Ribonuclease Z 2 (ELAC2)/RNase Z, RNase L, Dicer, and angiogenin (ANG), the tsRNAs can be classified into the following types based on the location from which they have been derived from the parental tRNA: tRF-1s, tRF-3s, tRF-5s, tiRNA, and tRF-2s/i-tRFs. Moreover, tsRNAs are a type of small RNAs with diverse functions, including gene expression regulation, anti-apoptosis, translation inhibition, participation in epigenetic regulation, initial virus reverse transcription, promote virus replication and cell-to-cell communication. Certain types of tsRNAs are overexpressed in cancer tissues, but are underexpressed in normal tissues. Therefore, the relationship between tsRNAs and the occurrence and development of cancer has attracted significant research attention. Research advancements have contributed to further discoveries of the biological activities of tsRNAs, but the mechanisms of their biogenesis and functions have not been fully elucidated. This article reviews the classification and biological functions of tsRNAs, and introduces the research progress in gynecological malignancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...