Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 8: 737059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901103

RESUMO

Monochromatic light is widely used in industry, medical treatment, and animal husbandry. Green-blue light has been found to stimulate the proliferation of satellite cells and the results of studies on the effects of blue light on poultry vary widely. It would be worthwhile to study the effect of blue light on poultry growth and how exposure to blue light affects metabolism and the intestinal microbiota. In this study, we irradiated Cherry Valley ducks with 460 nm wavelength light (blue light) for 3 weeks to explore the effects of blue light in comparison to those of white light (combined wavelength light) on animal growth and development. Our results showed that, under exposure to blue light, the body weight and average daily feed intake of ducks were decreased, but the leg muscle and relative length of the intestine were increased. Exposure to blue light chiefly enhanced the anti-inflammatory and antioxidant capacities of the animal and decreased lipid levels in serum and liver. Metabolomic analysis revealed that blue light heightened cysteine and methionine metabolism, and increased serum taurine and primary bile acid levels, as well as up-regulating the metabolites L-carnitine and glutamine. Treatment with blue light significantly increased the beta diversity of intestinal microbiota and the relative abundances of bile acid hydrolase-producing bacteria, especially Alistipes. These changes promote the synthesis of secondary bile acids to further enhance lipid metabolism in the host, thereby reducing cholesterol accumulation in ducks. These results should help us better understand the effects of exposure to blue light on metabolite levels and the intestinal microbiota, and suggest that it may be possible to use colored light to control the development of livestock and poultry.

2.
Front Vet Sci ; 8: 737160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552978

RESUMO

Gout is a disease involving abnormal purine metabolism that is widespread in mammals and birds. Goose is especially susceptible for gout in early stage. However, a few studies investigated the ontogenetic pattern of goslings with purine metabolic abnormality. Our studies were conducted to investigate whether persistent purine metabolic abnormality would lead to aggravation of visceral inflammation and intestinal microbiota dysbiosis in goose. A total of 132 1-day-old Magang geese were randomly divided into six replicates and fed a high-calcium and protein meal-based diet from 1 to 28 days. The experiment lasted for 28 days. Liver and kidney damages were observed in 14- and 28-day-old Magang geese, and liver inflammation increased with increasing age. In 28-day-old Magang geese, serum CAT and liver GSH-Px activity were significantly reduced. Furthermore, jejunum intestinal barrier was impaired and the abundance of Bacteroides was significantly reduced at the genus level. Collectively, the high-calcium and high-protein (HCP) meal-based diet caused liver and kidney damage in 28-day-old Magang geese, leading to hyperuricemia and gout symptoms, and the intestinal barrier is impaired and the intestinal flora is disrupted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...