Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Food Chem X ; 20: 100926, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144718

RESUMO

Poly (N-methacryloyl-L-alanine acid) grafted tartaric acid-crosslinked chitosan microspheres (PNMA-TACS) were successfully synthesized and employed as a novel adsorbent for the separation and enrichment of metal ions in the food system. PNMA-TACS microspheres-based solid phase extraction (SPE) was coupled with ICP-MS for accurate quantification of trace V(V), Cr(III), As(III), Pb(II), Cd(II) and Cu(II). The obtained PNMA-TACS microspheres were characterized, and parameters influencing the method were optimized. Under optimal conditions, the calibration curves for Cu(II) and V(V) were linear within 0.01-30 µg L-1, the linear ranges of Cr(III), As(III), Pb(II) and Cd(II) were 0.01-15 µg L-1, and the detection limit of the developed approach was 1.1-3.7 ng L-1. The results were consistent with the consensus values of method validation implemented by two standards. Moreover, standard addition recovery experiments were performed in rice and milk powder, which achieved satisfactory recovery of 86.1-103.5%.

2.
J Cardiovasc Dev Dis ; 9(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36135449

RESUMO

There is increasing recognition of the value of four-dimensional flow cardiovascular magnetic resonance (4D-flow MRI) as a potential means to detect and measure abnormal flow behaviour that occurs during early left ventricular (LV) dysfunction. We performed a systematic review of current literature on the role of 4D-flow MRI-derived flow parameters in quantification of LV function with a focus on potential clinical applicability. A comprehensive literature search was performed in March 2022 on available databases. A total of 1186 articles were identified, and 30 articles were included in the final analysis. All the included studies were ranked as "highly clinically applicable". There was considerable variability in the reporting of methodologies and analyses. All the studies were small-scale feasibility or pilot studies investigating a diverse range of flow parameters. The most common primary topics of investigation were energy-related flow parameters, flow components and vortex analysis which demonstrated potentials for quantifying early diastolic dysfunction, whilst other parameters including haemodynamic forces, residence time distribution and turbulent kinetic energy remain in need of further evaluation. Systematic quantitative comparison of study findings was not possible due to this heterogeneity, therefore limiting the collective power of the studies in evaluating clinical applicability of the flow parameters. To achieve broader clinical application of 4D-flow MRI, larger scale investigations are required, together with standardisation of methodologies and analytical approach.

3.
Front Cardiovasc Med ; 9: 1075833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698944

RESUMO

Purpose: Current intervention guidelines for bicuspid aortic valve (BAV) associated ascending aorta (AAo) dilatation are suboptimal predictors of clinical outcome. There is growing interest in identifying better biomarkers such as wall shear stress (WSS) to help risk stratify BAV aortopathy. The aim of the systematic review is to synthesize existing evidence of the relationship between WSS and aortopathy in the BAV population. Methods: A comprehensive literature search of available major databases was performed in May 2022 to include studies that used four-dimensional flow cardiac magnetic resonance (4D-flow) MRI to quantify WSS in the AAo in adult BAV populations. Summary results and statistical analysis were provided for key numerical results. A narrative summary was provided to assess similarities between studies. Results: A total of 26 studies that satisfied selection criteria and quality assessment were included in the review. The presence of BAV resulted in significantly elevated WSS magnitude and circumferential WSS, but not axial WSS. The presence of aortic stenosis had additional impact on WSS and flow alterations. BAV phenotypes were associated with different WSS distributions and flow profiles. Altered protein expression in the AAo wall associated with WSS supported the contribution of altered hemodynamics to aortopathy in addition to genetic factors. Conclusion: WSS has the potential to be a valid biomarker for BAV aortopathy. Future work would benefit from larger study cohorts with longitudinal evaluations to further characterize WSS association with aortopathy, mortality, and morbidities. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022337077, identifier CRD42022337077.

4.
Foods ; 10(11)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34828938

RESUMO

The effects of storage temperature on the physicochemical properties and qualities of red brown rice were investigated in this study. The samples were vacuum-packed in nylon/polyethylene pouches and stored at 15 °C, 25 °C and 35 °C for 12 weeks. The moisture content decreased as storage time was prolonged. Rice stored at 15 °C and 25 °C had a lower falling range of water content compared to the samples stored at 35 °C. Free fatty acid values increased fastest when samples were stored at a high temperature, and the rise can be effectively delayed at low temperatures. The pH of residual cooking water and adhesiveness decreased, while the heating water absorption rate and hardness increased during storage for red and brown rice. Low-field nuclear magnetic resonance results indicate that water molecules migrated, the binding force of H protons became stronger and the bonds between molecules became closer with increased storage duration. Temperature had an obvious correlation with starch granules and protein structure, characterized by a scanning electron microscope and Fourier transform infrared spectroscopy. Low temperatures significantly retarded those changes. The results indicate that storage temperature is a vital factor affecting the physicochemical properties and qualities of red brown rice and provided reference and theoretical basis for the actual storage of red brown rice.

5.
Front Neurol ; 12: 579998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093381

RESUMO

The inositol polyphosphate-5-phosphatase E (Inpp5e) gene is located on chromosome 9q34.3. The enzyme it encodes mainly hydrolyzes the 5-phosphate groups of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns (3,4,5) P3) and phosphatidylinositol (4,5)-bisphosphate (PtdIns (4,5)P2), which are closely related to ciliogenesis and embryonic neurodevelopment, through mechanisms that are largely unknown. Here we studied the role of Inpp5e gene in ciliogenesis during embryonic neurodevelopment using inositol-deficiency neural tube defects (NTDs) mouse and cell models. Confocal microscopy and scanning electron microscope were used to examine the number and the length of primary cilia. The dynamic changes of Inpp5e expression in embryonic murine brain tissues were observed during Embryonic Day 10.5-13.5 (E 10.5-13.5). Immunohistochemistry, western blot, polymerase chain reaction (PCR) arrays were applied to detect the expression of Inpp5e and cilia-related genes of the embryonic brain tissues in inositol deficiency NTDs mouse. Real-time quantitative PCR (RT-qPCR) was used to validate the candidate genes in cell models. The levels of inositol and PtdIns(3,4) P2 were measured using gas chromatography-mass spectrometry (GC-MS) and enzyme linked immunosorbent assay (ELISA), respectively. Our results showed that the expression levels of Inpp5e gradually decreased in the forebrain tissues of the control embryos, but no stable trend was observed in the inositol deficiency NTDs embryos. Inpp5e expression in inositol deficiency NTDs embryos was significantly decreased compared with the control tissues. The expression levels of Inpp5e gene and the PtdIns (3,4) P2 levels were also significantly decreased in the inositol deficient cell model. A reduced number and length of primary cilia were observed in NIH3T3 cells when inositol deficient. Three important cilia-related genes (Ift80, Mkks, Smo) were down-regulated significantly in the inositol-deficient NTDs mouse and cell models, and Smo was highly involved in NTDs. In summary, these findings suggested that down-regulation of Inpp5e might be associated with abnormal ciliogenesis during embryonic neurodevelopment, under conditions of inositol deficiency.

6.
Ecotoxicol Environ Saf ; 208: 111729, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396060

RESUMO

In this work, carboxyl-functionalized hollow polymer microspheres (CHPMs) was successfully fabricated using poly (styrene-itaconic anhydride) particles as the core template and itaconic anhydride and trans-anethole cross-linked with divinylbenzene as the shell. The desirable microspheres and hollow structure of CHPMs were demonstrated by scanning and transmission electron microscopies, respectively. The characterized CHPMs as an adsorbent was packed into a solid phase extraction column to simultaneously detect the V(V), Cr(III), Cu(II), Cd(II), and Pb(II) in digested food samples by inductively coupled plasma-mass spectrometry (ICP-MS). A series of experimental parameters of solid-phase extraction (SPE) were investigated through vast experiments to improve sensitivity of the proposed method in metal ions detection. The detection limits of the method reached 0.8-3.2 ng L-1 for the target elements, and the relative standard deviations (RSDs) ranging from 1.2% to 3.5% were obtained from eleven parallel experiments using a 1.0 µg L-1 sample solution. The stability allowed the material to withstand more than 15 cycling while the recoveries remained above 88%. In food samples, the detection limits were at 0.20-0.80 µg kg-1, and satisfactory recoveries of 85-104% were obtained in spike tests of laver, fish as well as chicken.


Assuntos
Análise de Alimentos/métodos , Extração em Fase Sólida/métodos , Oligoelementos/análise , Concentração de Íons de Hidrogênio , Microesferas , Polímeros/química , Análise Espectral
7.
Pediatr Res ; 90(1): 82-92, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33173184

RESUMO

BACKGROUND: Lithium carbonate (Li2CO3) is widely used in the treatment of clinical-affective psychosis. Exposure to Li2CO3 during pregnancy increases the risk of neural tube defects (NTDs) in offspring, which are severe birth defects of the central nervous system. The mechanism of Li2CO3-induced NTDs remains unclear. METHODS: C57BL/6 mice were injected with different doses of Li2CO3 intraperitoneally on gestational day 7.5 (GD7.5), and embryos collected at GD11.5 and GD13.5. The mechanisms of Li2CO3 exposure-induced NTDs were determined utilizing immunohistochemistry, western blotting, EdU imaging, enzymatic method, gas chromatography-mass spectrometry (GC-MS), ELISA and HE staining. RESULTS: The NTDs incidence was 33.7% following Li2CO3 exposure. Neuroepithelial cell proliferation and phosphohistone H3 level were significantly increased in NTDs embryos, compared with control group (P < 0.01), while the expressing levels of p53 and caspase-3 were significantly decreased. IMPase and GSK-3ß activity was inhibited in Li2CO3-treated maternal and embryonic neural tissues (P < 0.01 and P < 0.05, respectively), along with decreased levels of inositol and metabolites, compared with control groups (P < 0.01). CONCLUSIONS: Lithium-induced NTDs model in C57BL/6 mice was established. Enhanced cell proliferation and decreased apoptosis following lithium exposure were closely associated with the impairment of inositol biosynthesis, which may contribute to lithium-induced NTDs. IMPACT: Impairment of inositol biosynthesis has an important role in lithium exposure-induced NTDs in mice model. Lithium-induced NTDs model on C57BL/6 mice was established. Based on this NTDs model, lithium-induced impairment of inositol biosynthesis resulted in the imbalance between cell proliferation and apoptosis, which may contribute to lithium-induced NTDs. Providing evidence to further understand the molecular mechanisms of lithium-induced NTDs and enhancing its primary prevention.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Carbonato de Lítio/efeitos adversos , Exposição Materna , Defeitos do Tubo Neural/induzido quimicamente , 5'-Nucleotidase/metabolismo , Animais , Sistema Nervoso Central/crescimento & desenvolvimento , Modelos Animais de Doenças , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Inositol/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
8.
Sci Total Environ ; 752: 142282, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33207523

RESUMO

Herein, we report a method to synthesize nitrogen self-doped hierarchical porous carbon materials derived from chitosan. This method uses potassium hydroxide (KOH) activation and rapid-freezing technology. The catalyst (CA-900Q 1-1) obtained after rapid-freezing and KOH activation treatment show excellent persulfate activation ability. It can remove 20 mg bisphenol A (BPA) within 10 min better than traditional metal oxidate and nanomaterials. In the aquatic environment, CA-900Q 1-1 has a high resistance to inorganic anions. CA-900Q 1-1, possessing a high proportion of graphitic nitrogen, provides a sufficient number of active sites for persulfate activation. In addition, the catalyst yielded sizeable specific surface areas (SSAs) (1756.1 m2/g) and a hierarchical pore structure, which helps to improve the mass transfer in the carbon framework. The efficient adsorption of pollutants by the catalyst shortens the time required for target organic molecules to migrate to the catalyst surface and hierarchical pore structure. Furthermore, the catalyst has excellent electrical conductivity (R = 1.73 Ω), which enables pollutants adsorbed on the catalyst surface to transfer electrons to the persulfate through the N-doped sp2-hybrid carbon network faster.

9.
J Environ Manage ; 276: 111269, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32891030

RESUMO

As a fundamental resource for human beings, cultivated land contributes significantly to the sustainable development of society. Investigating cultivated land stability in semiarid areas with a fragile ecology is essential for stabilizing agricultural production and preserving environmental security. The objective of this study was to evaluate cultivated land stability by combining the growth root normalized difference vegetation index (GRNDVI) and precipitation during the crop growing season from 2015 to 2019 in the Horqin Zuoyihou Banner. The productivity of cultivated land was categorized into five levels by the relative criterion, and the minimum productivity level was chosen to represent the stability level. The results showed that a variation in precipitation was evident across both years and crop growing seasons; approximately 66.78% of the cultivated land was classified as moderately stable, 6.55% was classified as highly stable, 22.14% was classified as marginally stable, 0.91% was classified as extremely stable, and 3.62% was classified as unstable. Extremely and highly stable cultivated lands were dominant at the eastern and southern ends of the region, and marginal and unstable cultivated lands were principally present in the west and north while moderately stable land was distributed extensively. Cultivated land stability was affected substantially by water availability and topography, indicating that cultivated land with high levels of stability was distributed more in areas with abundant water and flat terrain. Marginally stable and unstable cultivated lands should be returned to their previous vegetation covers, with priority given to planting appropriate sandy plants to restore ecological integrity. Such evaluation outcomes are meaningful for optimizing the distribution of cultivated land and facilitating the sustainable utilization of land resources.


Assuntos
Conservação dos Recursos Naturais , Solo , China , Humanos , Areia , Estações do Ano
10.
J Hazard Mater ; 398: 122808, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32446106

RESUMO

Designing efficient and low-cost catalysts to activate peroxymonosulfate (PMS) to rapidly degrade organic contaminants is important for the practical applications of the advanced oxidation process. Herein, inspired by the water absorption process of the baby diaper, we design nitrogen-doped porous carbon network catalysts (N-PCNs) for peroxymonosulfate activate to degrade recalcitrant organic pollutants. The resulting product called nitrogen-doped porous carbon networks carbonized at 800 °C (N-PCN8) exhibits enhanced adsorption and catalytic activity due to its large specific surface area (1137.7 m2 g-1), highly graphitic degree, and high graphite N content (50.3%).4-CP (0.02 g/L) was completely degraded in 30 min by using N-PCN8 (0.2 g/L) and PMS (0.2 g/L). The catalytic system is efficient over a wide pH range (3-9) and shows strong resistance to interference with inorganic anions (Cl-, HCO3-, CO32-). Several aromatic pollutants, including 4-CP, BA, NB, HBA, CBZ, and BPA, are used as target pollutants to further evaluate the oxidative capacity of the system, and the degradation rate were 100%, 19.5%, 3.5%,5 5.7%, 79% and 100%, respectively. Results suggest that the system is selective for pollutants, and singlet oxygen oxidation and mediated electron transfer effects are the main causes of 4-CP degradation.

11.
Med Sci Monit ; 26: e921088, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32063600

RESUMO

BACKGROUND Inositol is an essential nutrient for cell growth, survival and embryonic development. Myo-inositol is the predominant form in natural. To investigate the correlation between inositol metabolism and embryonic development, we assessed the metabolic characteristics of myo-inositol, phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) of pregnant women in the North China (Yangquan and Weihai) and South China (Nanchang and Haikou) China. MATERIAL AND METHODS All data were collected by face-to-face interview during pregnant women health visits using a questionnaire. Plasma levels of myo-inositol, PI(4,5)P2 and PI(3,4,5)P3 from 89 randomly collected pregnant women were detected by gas chromatography-mass spectrometry and enzyme linked immunosorbent assay. RESULTS A total of 400 pregnant women were included in this survey. The plasma levels of myo-inositol and PI(4,5)P2 in the North China group of pregnant women were significantly higher than that in the South China group (P<0.01). The birth weight of fetuses in the North China group was heavier than that in the South China group (P<0.01). The birth length of fetuses in Yangquan was the longest among the 4 cities (P<0.01). The incidence rate of birth defects was 3.05% in the North China group, and 0.0% in the South China group. In bivariate linear correlation analysis, the body weight correlated with myo-inositol (r=0.5044, P<0.0001), PI(4,5)P2 (r=0.5950, P<0.0001) and PI(3,4,5)P3 (r=0.4710, P<0.0001), the body length was correlated with PI(4,5)P2 (r=0.3114, P=0.0035) and PI(3,4,5)P3 (r=0.2638, P<0.0130). CONCLUSIONS The plasma levels of myo-inositol and PI(4,5)P2 in pregnant women had significant difference between the North and the South of China, which might be correlated with fetal development and birth defects.


Assuntos
Anormalidades Congênitas/epidemiologia , Desenvolvimento Fetal/fisiologia , Inositol/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Adulto , China/epidemiologia , Anormalidades Congênitas/metabolismo , Feminino , Geografia , Humanos , Incidência , Recém-Nascido , Inositol/sangue , Fosfatidilinositol 4,5-Difosfato/sangue , Fosfatos de Fosfatidilinositol/sangue , Fosfatos de Fosfatidilinositol/metabolismo , Gravidez
12.
Curr Genet ; 66(3): 517-529, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31728616

RESUMO

Fusarium graminearum is a destructive fungal pathogen and a major cause of Fusarium head blight (FHB) which results in severe grain yield losses and quality reduction. Additionally, the pathogen produces mycotoxins during plant infection, which are harmful to the health of humans and livestock. As it is well known that lysine acetyltransferase complexes play important roles in pathogenesis, the roles of the Eaf6 homolog-containing complex have not been reported in fungal pathogen. In this study, a Eaf6 homolog FgEaf6 was identified in F. graminearum. To investigate the functions of FgEaf6, the gene was deleted using the split-marker method. ΔFgEaf6 mutant exhibited manifold defects in hyphal growth, conidial septation, asexual and sexual reproduction. Moreover, the virulence of the ΔFgEaf6 mutant was drastically reduced in both wheat heads and wheat coleoptiles. However, the FgEaf6 gene deletion did not impact DON production. An FgEaf6-gfp fusion localized to the nucleus and a conserved coiled-coil (C-C) domain was predicted in the sequence. Mutants with deletions in the C-C domain displayed similar defects during development and virulence as observed in the ΔFgEaf6 mutant. Moreover, the truncated gene was cytoplasm localized. In conclusion, the FgEaf6 encodes a nuclear protein, which plays key regulatory roles in hyphal growth, conidial septation, asexual/sexual reproduction, and the virulence of F. graminearum. The C-C is an indispensable domain in the gene. This is the first report on Eaf6 homolog functioning in virulence of fungal pathogen.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Reprodução Assexuada , Esporos Fúngicos/crescimento & desenvolvimento , Triticum/microbiologia , Virulência , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica , Desenvolvimento Sexual , Esporos Fúngicos/genética
13.
PLoS One ; 13(1): e0190932, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29320571

RESUMO

The fungal pathogen Botrytis cinerea causes gray mold disease on various hosts, which results in serious economic losses. Over the past several decades, many kinds of fungicides have been used to successfully control the disease. Meanwhile, the uses of fungicides lead to environmental pollution as well as a potential threat to the human health by the chemical residues in tomato fruit. Also, the gray mold disease is difficult to control with fungicides. Therefore, exploring alternative measures such as biological controls could be the best choice to control the disease and alleviate damages caused by fungicides. In this study, we isolated and identified a novel Pseudomonas strain termed as QBA5 from healthy tomato plant based on the morphological, biochemical characteristics and molecular detection. The antifungal activity assays revealed that, in the presence of QBA5, conidia germination, germ tube elongation and mycelial growth of B. cinerea were significantly inhibited. Most importantly, QBA5 exerted a significant preventive effectiveness against gray mold on tomato fruits and plants. The possible mechanism of QBA5 involved in the inhibition of B. cinerea was investigated. It revealed that the conidia plasma membrane of B. cinerea was severely damaged by QBA5. Further, four different antifungal compounds in the supernatant of QBA5 were separated by preparative high performance liquid chromatography (PHPLC). Overall, the data indicate that there is a considerable potential for QBA5 to reduce the damage caused by gray mold disease on tomato.


Assuntos
Antibiose , Botrytis/fisiologia , Frutas/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Pseudomonas/fisiologia , Solanum lycopersicum/microbiologia , Antifúngicos/química , Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Meios de Cultura/química , Frutas/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/terapia , Folhas de Planta/efeitos dos fármacos , Pseudomonas/isolamento & purificação , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...