Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(13): 9636-9644, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38497667

RESUMO

A two-dimensional (2D) ferroelectric semiconductor, which is coupled with photosensitivity and room-temperature ferroelectricity, provides the possibility of coordinated conductance modulation by both electric field and light illumination and is promising for triggering the revolution of optoelectronics for monolithic multifunctional integration. Here, we report that semiconducting Sn2P2S6 crystals can be achieved in a 2D morphology using a chemical vapor transport approach with the assistant of space confinement and experimentally demonstrate the robust ferroelectricity in atomic-thin Sn2P2S6 nanosheet at room temperature. The intercorrelated programming of ferroelectric order along out-of-plane (OOP) and in-plane (IP) directions enables a tunable bulk photovoltaic (BPV) effect through multidirectional electrical control. By combining the capability of anisotropic in-plane optical absorption, a highly integrated Sn2P2S6 optoelectronic device vertically sandwiched with graphene electrodes yields the polarization-dependent open-circuit photovoltage with a dichroic ratio of 2.0 under 405 nm light illumination. The reintroduction of ferroelectric Sn2P2S6 to the 2D asymmetric semiconductor family provides possibilities to hardware implement of the self-powered polarization-sensitive photodetection and spotlights the promising applications for next-generation photovoltaic devices.

2.
Food Funct ; 15(4): 2234-2248, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38318730

RESUMO

A promising and efficacious approach to manage diabetes is inhibiting α-glucosidase and α-amylase activity. Therefore, the inhibitory activities of five natural sweeteners (mogrosides (Mog), stevioside (Ste), glycyrrhizinic acid (GA), crude trilobatin (CT), and crude rubusoside (CR)) against α-glucosidase and α-amylase and their interactions were evaluated in vitro using enzyme kinetics, fluorescence spectroscopy, Fourier infrared spectroscopy, and molecular docking. The inhibitor sequence was CT > GA > Ste, as GA competitively inhibited α-glycosidase activity while CT and Ste exhibited mixed inhibitory effects. Compared to a positive control acarbose, the inhibitory activity of CT was higher. For α-amylase, the mixed inhibitors CT, CR, and Mog and the competitive inhibitor Ste effectively inhibited the enzyme, with the following order: CT > CR > Ste > Mog; nevertheless, the inhibitors were slightly inferior to acarbose. Three-dimensional fluorescence spectra depicted that GA, CT, and CR bound to the hydrophobic cavity of α-glucosidase or α-amylase and changed the polarity of the hydrophobic amino acid-based microenvironment and structure of the polypeptide chain backbone. Infrared spectroscopy revealed that GA, CT, and CR could disrupt the secondary structure of α-glucosidase or α-amylase, which decreased enzyme activity. GA, trilobatin and rubusoside bound to amino acid residues through hydrogen bonds and hydrophobic interactions, changing the conformation of enzyme molecules to decrease the enzymatic activity. Thus, CT, CR and GA exhibit promising inhibitory effects against α-glucosidase and α-amylase.


Assuntos
Acarbose , Diterpenos do Tipo Caurano , Flavonoides , Glucosídeos , Inibidores de Glicosídeo Hidrolases , Polifenóis , Acarbose/farmacologia , Acarbose/química , Inibidores de Glicosídeo Hidrolases/química , Simulação de Acoplamento Molecular , alfa-Glucosidases/metabolismo , alfa-Amilases/metabolismo , Estrutura Secundária de Proteína , Aminoácidos
3.
Nanoscale ; 16(8): 4189-4196, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38323830

RESUMO

Bi2O2Se has attracted intensive attention due to its potential in electronics, optoelectronics, and ferroelectric applications. Despite that, there have only been a handful of experimental studies based on ultrafast spectroscopy to elucidate the carrier dynamics in Bi2O2Se thin films. Besides, different groups have reported various ultrafast timescales and associated mechanisms across films of different thicknesses. A comprehensive understanding in relation to thickness and fluence is still lacking. In this work, we have systematically explored the thickness-dependent Raman spectroscopy and ultrafast carrier dynamics in chemical vapor deposition (CVD)-grown Bi2O2Se thin films on a mica substrate with thicknesses varying from 22.44 nm down to 4.62 nm in both low and high pump fluence regions. Combining the thickness dependence and fluence dependence of the slow decay time, we demonstrate a hidden photoinduced ferroelectric transition in the thinner (<8 nm) Bi2O2Se films below the material damage thresholds, influenced by substrate-induced compressive strain and far-from-equilibrium excitation. Moreover, this transition can be manifested at high electronic excitation densities. Our results deepen the understanding of the interplay between the ferroelectric phase and semiconducting characteristics of Bi2O2Se thin films, offering potential applications in optoelectronic devices that benefit from the ferroelectric transition.

4.
Nat Commun ; 14(1): 6736, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872169

RESUMO

Neuro-inspired vision systems hold great promise to address the growing demands of mass data processing for edge computing, a distributed framework that brings computation and data storage closer to the sources of data. In addition to the capability of static image sensing and processing, the hardware implementation of a neuro-inspired vision system also requires the fulfilment of detecting and recognizing moving targets. Here, we demonstrated a neuro-inspired optical sensor based on two-dimensional NbS2/MoS2 hybrid films, which featured remarkable photo-induced conductance plasticity and low electrical energy consumption. A neuro-inspired optical sensor array with 10 × 10 NbS2/MoS2 phototransistors enabled highly integrated functions of sensing, memory, and contrast enhancement capabilities for static images, which benefits convolutional neural network (CNN) with a high image recognition accuracy. More importantly, in-sensor trajectory registration of moving light spots was experimentally implemented such that the post-processing could yield a high restoration accuracy. Our neuro-inspired optical sensor array could provide a fascinating platform for the implementation of high-performance artificial vision systems.

5.
Nat Commun ; 14(1): 2521, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130849

RESUMO

Two-dimensional (2D) layered semiconductors with nonlinear optical (NLO) properties hold great promise to address the growing demand of multifunction integration in electronic-photonic integrated circuits (EPICs). However, electronic-photonic co-design with 2D NLO semiconductors for on-chip telecommunication is limited by their essential shortcomings in terms of unsatisfactory optoelectronic properties, odd-even layer-dependent NLO activity and low NLO susceptibility in telecom band. Here we report the synthesis of 2D SnP2Se6, a van der Waals NLO semiconductor exhibiting strong odd-even layer-independent second harmonic generation (SHG) activity at 1550 nm and pronounced photosensitivity under visible light. The combination of 2D SnP2Se6 with a SiN photonic platform enables the chip-level multifunction integration for EPICs. The hybrid device not only features efficient on-chip SHG process for optical modulation, but also allows the telecom-band photodetection relying on the upconversion of wavelength from 1560 to 780 nm. Our finding offers alternative opportunities for the collaborative design of EPICs.

6.
RSC Adv ; 13(22): 14849-14854, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37197181

RESUMO

Memristive devices operating analogous to biology synapses demonstrate great potential for neuromorphic applications. Here, we reported the space-confined vapor synthesis of ultrathin titanium trisulfide (TiS3) nanosheets, and subsequent laser manufacturing of a TiS3-TiOx-TiS3 in-plane heterojunction for memristor applications. Due to the flux-controlled migration and aggregation of oxygen vacancies, the two-terminal memristor demonstrates reliable "analog" switching behaviors, in which the channel conductance can be incrementally adjusted by tuning the duration and sequence of programming voltage. The device allows the emulation of basic synaptic functions, featuring excellent linearity and symmetry in conductance change during long-term potentiation/depression processes. The small asymmetric ratio of 0.15 enables it to be integrated into a neural network for the pattern recognition task with a high accuracy of 90%. The results demonstrate the great potential of TiS3-based synaptic devices for neuromorphic applications.

7.
Nanoscale Adv ; 4(24): 5290-5296, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36540126

RESUMO

Mixed-dimensional van der Waals (vdW) integration has been demonstrated to be effective for the modulation of the physical properties of homogeneous materials. Herein, we reported the enhancement of photothermal conversion and decrease of thermal conductivity in metallic single-walled carbon nanotube (SWCNT) films with the integration of chemical vapor deposition-grown monolayer MoS2 films. The induced temperature gradient in SWCNT-MoS2 hybrid films drives carrier diffusion to generate photocurrent via the photothermoelectric (PTE) effect, and a self-powered photodetector working in the visible band range from 405 to 785 nm was demonstrated. The maximum responsivity of the device increases by 6 times compared to that of the SWCNT counterpart. More importantly, the mixed-dimensional device exhibits polarization-dependent photogeneration, showing a large anisotropy ratio of 1.55. This work paves a way for developing high-performance, polarization-sensitive photodetectors by mixed-dimensional integration.

8.
Nat Commun ; 13(1): 6158, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257951

RESUMO

The limited capacity of the positive electrode active material in non-aqueous rechargeable lithium-based batteries acts as a stumbling block for developing high-energy storage devices. Although lithium transition metal oxides are high-capacity electrochemical active materials, the structural instability at high cell voltages (e.g., >4.3 V) detrimentally affects the battery performance. Here, to circumvent this issue, we propose a Li1.46Ni0.32Mn1.2O4-x (0 < x < 4) material capable of forming a medium-entropy state spinel phase with partial cation disordering after initial delithiation. Via physicochemical measurements and theoretical calculations, we demonstrate the structural disorder in delithiated Li1.46Ni0.32Mn1.2O4-x, the direct shuttling of Li ions from octahedral sites to the spinel structure and the charge-compensation Mn3+/Mn4+ cationic redox mechanism after the initial delithiation. When tested in a coin cell configuration in combination with a Li metal anode and a LiPF6-based non-aqueous electrolyte, the Li1.46Ni0.32Mn1.2O4-x-based positive electrode enables a discharge capacity of 314.1 mA h g-1 at 100 mA g-1 with an average cell discharge voltage of about 3.2 V at 25 ± 5 °C, which results in a calculated initial specific energy of 999.3 Wh kg-1 (based on mass of positive electrode's active material).

9.
Small ; 18(5): e2104401, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34825486

RESUMO

2D van der Waals (vdW) semiconductors hold great potentials for more-than-Moore field-effect transistors (FETs), and the efficient utilization of their theoretical performance requires compatible high-k dielectrics to guarantee the high gate coupling efficiency. The deposition of traditional high-k dielectric oxide films on 2D materials usually generates interface concerns, thereby causing the carrier scattering and degeneration of device performance. Here, utilizing a space-confined epitaxy growth approach, the authors successfully obtained air-stable ultrathin indium phosphorus sulfide (In2 P3 S9 ) nanosheets, the thickness of which can be scaled down to monolayer limit (≈0.69 nm) due to its layered structure. 2D In2 P3 S9 exhibits excellent insulating properties, with a high dielectric constant (≈24) and large breakdown voltage (≈8.1 MV cm-1 ) at room temperature. Serving as gate insulator, ultrathin In2 P3 S9 nanosheet can be integrated into MoS2 FETs with high-quality dielectric/semiconductor interface, thus providing a competitive electrical performance of device with subthreshold swings (SS) down to 88 mV dec-1 and a high ON/OFF ratio of 105 . This study proves an important strategy to prepare 2D vdW high-k dielectrics, and greatly facilitates the ongoing research of 2D materials for functional electronics.

10.
Nano Lett ; 21(19): 8043-8050, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34550704

RESUMO

Two-dimensional (2D) trigonal selenium (t-Se) has become a new member in 2D semiconducting nanomaterial families. It is composed of well-aligned one-dimensional Se atomic chains bonded via van der Waals (vdW) interaction. The contribution of this unique anisotropic nanostructure to its mechanical properties has not been explored. Here, for the first time, we combine experimental and theoretical analyses to study the anisotropic mechanical properties of individual 2D t-Se nanosheets. It was found that its fracture strength and Young's modulus parallel to the atomic chain direction are much higher than along the transverse direction, which was attributed to the weak vdW interaction between Se atomic chains as compared to the covalent bonding within individual chains. Additionally, two distinctive fracture modes along two orthogonal loading directions were identified. This work provides important insights into the understanding of anisotropic mechanical behaviors of 2D semiconducting t-Se and opens new possibilities for future applications.


Assuntos
Nanoestruturas , Selênio , Anisotropia , Módulo de Elasticidade , Humanos
11.
J Phys Condens Matter ; 33(49)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34479213

RESUMO

Two-dimensional (2D) materials have attracted broad interests and been extensively exploited for a variety of functional applications. Moreover, one-dimensional (1D) atomic crystals can also be integrated into 2D templates to create mixed-dimensional heterostructures, and the versatility of combinations provides 2D-1D heterostructures plenty of intriguing physical properties, making them promising candidate to construct novel electronic and optoelectronic nanodevices. In this review, we first briefly present an introduction of relevant fabrication methods and structural configurations for 2D-1D heterostructures integration. We then discuss the emerged intriguing physics, including high optical absorption, efficient carrier separation, fast charge transfer and plasmon-exciton interconversion. Their potential applications such as electronic/optoelectronic devices, photonic devices, spintronic devices and gas sensors, are also discussed. Finally, we provide a brief perspective for the future opportunities and challenges in this emerging field.

12.
Small ; 17(17): e2007739, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33739614

RESUMO

2D organic crystals exhibit efficient charge transport and field-effect characteristics, making them promising candidates for high-performance nanoelectronics. However, the strong Fermi level pinning (FLP) effect and large Schottky barrier between organic semiconductors and metals largely limit device performance. Herein, by carrying out temperature-dependent transport and Kelvin probe force microscopy measurements, it is demonstrated that the introducing of 2D metallic 1T-TaSe2 with matched band-alignment as electrodes for F16 CuPc nanoflake filed-effect transistors leads to enhanced field-effect characteristics, especially lowered Schottky barrier height and contact resistance at the contact and highly efficient charge transport within the channel, which are attributed to the significantly suppressed FLP effect and appropriate band alignment at the nonbonding van der Waals (vdW) hetero-interface. Moreover, by taking advantage of the improved contact behavior with 1T-TaSe2 contact, the optoelectronic performance of F16 CuPc nanoflake-based phototransistor is drastically improved, with a maximum photoresponsivity of 387 A W-1 and detectivity of 3.7 × 1014 Jones at quite a low Vds of 1 V, which is more competitive than those of the reported organic photodetectors and phototransistors. The work provides an avenue to improve the electrical and optoelectronic properties of 2D organic devices by introducing 2D metals with appropriate work function for vdW contacts.

13.
ACS Nano ; 14(8): 10018-10026, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806043

RESUMO

Hardware implementation of an artificial neural network requires neuromorphic devices to process information with low energy consumption and high heterogeneity. Here we demonstrate an electrolyte-gated synaptic transistor (EGT) based on a trigonal selenium (t-Se) nanosheet. Due to the intrinsic low conductivity of the Se channel, the t-Se synaptic transistor exhibits ultralow energy consumption, less than 0.1 pJ per spike. More importantly, the intrinsic low symmetry of t-Se offers a strong anisotropy along its c- and a-axis in electrical conductance with a ratio of up to 8.6. The multiterminal EGT device exhibits an anisotropic response of filtering behavior to the same external stimulus, which enables it to mimic the heterogeneous signal transmission process of the axon-multisynapse biostructure in the human brain. The proof-of-concept device in this work represents an important step to develop neuromorphic electronics for processing complex signals.


Assuntos
Selênio , Transistores Eletrônicos , Anisotropia , Eletrólitos , Humanos , Redes Neurais de Computação
14.
Artigo em Inglês | MEDLINE | ID: mdl-32781031

RESUMO

Red-spotted grouper (Epinephelus akaara) is one of the high economic value grouper species, however, the knowledge regarding its growth is limited. In this study, full-length cDNAs of growth hormone (gh) and its receptors (ghr1 and ghr2) were cloned from the pituitary and liver of red-spotted grouper, respectively. Tissue distribution analysis showed that gh mRNA was predominantly expressed in the pituitary. ghr1 mRNA was highly expressed in the liver, muscle, fat and gonad, while ghr2 mRNA expression was ubiquitously high in the peripheral tissues. However, the mRNA expression of both ghr isoforms was relatively low in the central nervous system. Secretory recombinant grouper GH (rgGH) was expressed in yeast Pichia pastoris and verified. HEK293T cells transiently transfected with the GHR isoforms were used to elucidate the receptor-mediated signaling pathways related to growth regulation. rgGH activated rapid phosphorylation of Janus kinase 2, signal transducer and activator of transcription 5 (STAT5) and extracellular signal-regulated protein kinase 1/2 through GHR1, but only STAT5 was phosphorylated via GHR2. rgGH strongly activated STAT5 phosphorylation and significantly stimulated ghr1, ghr2 and insulin-like growth factor (igf1, igf2) mRNA expression in primary cultured hepatocytes. Data showed that the recombinant protein rgGH played effects on igf1/2 mRNA expression via GHR-mediated signaling pathways. Our findings provide essential information about GH and GHRs characteristics in red-spotted grouper.


Assuntos
Proteínas de Peixes/metabolismo , Hormônio do Crescimento/metabolismo , Perciformes/metabolismo , Receptores da Somatotropina/metabolismo , Sequência de Aminoácidos , Animais , Hormônio do Crescimento/química , Hormônio do Crescimento/genética , Células HEK293 , Humanos , Perciformes/genética
15.
Gen Comp Endocrinol ; 287: 113357, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31821794

RESUMO

Growth hormone is a hormone secreted from the pituitary and is involved in the regulation of most major physiological processes such as growth, development and metabolism. Therefore, an accurate and sensitive detection method is needed for the detection of tilapia serum Gh level. Phage display technology is widely used in the expression of antibody fragments, in which fragments of antibodies are expressed as a fusion with phage proteins and are displayed on the phage surface for easy screening. Time-resolved fluorescence immunoassay (TRFIA) is a microanalysis method developed nearly two decades ago and is one of the most sensitive analytical techniques. With the use of a special lanthanide, the detection background can be distinguished, which can greatly improve the sensitivity of detection. In this report, we cloned the VH and VL DNA fragments from the lymphocytes of rabbits immunized with recombinant Gh and assembled them with a linker to form a single-chain variable fragment (scFv) gene pool. Using phage display technology, we isolated scFv DNA fragments from the pool, which encode a protein that specifically binds to tilapia Gh. We then established Eu-DTTA-based TRFIA for measuring plasma Gh in tilapia. The sensitivity of double antibody sandwich Gh-TRFIA was 0.225 ng/ml, and the linear range of the standard curve was 0.225-250 ng/ml. The intra- and interassay coefficients of variation (CVs) were <9.1 and <4.5%, respectively. The cross-reactivities (CRs) of 1 µg/ml recombinant tilapia somatolactin (rtSl), prolactin (rtPrl) and thyroid-stimulating hormone beta subunit (rtTshb) were 0.042%, 0.472% and 0.036%, respectively. The sensitivity of direct competitive Gh-TRFIA was 0.208 ng/ml, and the linear range of the standard curve was 0.208-500 ng/ml. The intra- and interassay CVs were <4.8 and <7.1%, respectively. The CRs of 1 µg/ml rtSl, rtPrl and rtTshb were 0.041%, 0.079% and 0.073%, respectively. In conclusion, Gh-TRFIA is a safe (no concerns about radioactive isotopes), economical, and efficient detection method for the quantification of plasma Gh. Thus, the application of phage display technology for antibody screening and the use of TRFIA for tilapia Gh detection are conducive to research in the field of fish endocrinology.


Assuntos
Fluorimunoensaio/métodos , Hormônio do Crescimento/sangue , Hipófise/metabolismo , Animais , Peixes , Tilápia
16.
Fish Shellfish Immunol ; 97: 1-11, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31846770

RESUMO

Deteriorating water quality, especially from high concentrations of nitrite, is currently largely blamed for disease outbreaks in farmed tilapia (Oreochromis niloticus). In this study, the underlying mechanism of nitrite on the susceptibility of tilapia leucocytes to Streptococcus agalactiae (S. agalactiae) was studied. We found that a high dose of heat-killed S. agalactiae decreased tilapia leucocytes cell viability, whereas nitrite decreased the cell viability of leucocytes exposed to a low dose of bacteria. Bacterial challenge increased the production of nitric oxide (NO), whereas nitrite and bacteria coexposure caused higher NO production than nitrite or bacterial exposure alone. Cell viability increased after elimination of NO, and negative correlations existed between cell viability and the NO content, suggesting that nitrite increased the susceptibility of the leucocytes against S. agalactiae was NO-dependent. For a more comprehensive understanding of the mechanism of nitrite affecting disease resistance in tilapia leucocytes, an RNA-Seq-based transcriptome was generated. The results showed that 6173 transcripts were differently expressed, and the differentially expressed transcripts (DETs) of the bacterial group, nitrite group and bacteria-nitrite co-treatment group compared to the control group were selected for GO and KEGG analyses. The DETs in the bacterial group and bacteria-nitrite cotreatment group were highly involved with the membrane component, signal transduction, and immune responses. KEGG analysis showed that the protein processing in the endoplasmic reticulum and the AMPK signaling pathway, which are related to autophagy, were significantly enriched in the cotreatment group but not in bacterial group. In addition, the mRNA expression of ten DETs and several autophagy and apoptosis related genes validated by q-PCR showed the high reliability of the RNA-seq. Taken together, the results of this study suggest that nitrite may increase the susceptibility of tilapia leucocytes to S. agalactiae by generating excess NO to affect the autophagy and apoptosis process.


Assuntos
Ciclídeos/microbiologia , Doenças dos Peixes/microbiologia , Leucócitos/patologia , Nitritos/metabolismo , Infecções Estreptocócicas/veterinária , Animais , Aquicultura , Sobrevivência Celular , Resistência à Doença , Doenças dos Peixes/imunologia , Perfilação da Expressão Gênica , Óxido Nítrico/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transdução de Sinais , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae
17.
BMC Genomics ; 20(1): 919, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791229

RESUMO

BACKGROUND: Compensatory growth refers to the phenomenon in which organisms grow faster after the improvement of an adverse environment and is thought to be an adaptive evolution to cope with the alleviation of the hostile environment. Many fish have the capacity for compensatory growth, but the underlying cellular mechanisms remain unclear. In the present study, microarray and nontargeted metabolomics were performed to characterize the transcriptome and metabolome of zebrafish liver during compensatory growth. RESULTS: Zebrafish could regain the weight they lost during 3 weeks of fasting and reach a final weight similar to that of fish fed ad libitum when refed for 15 days. When refeeding for 3 days, the liver displayed hyperplasia accompanied with decreased triglyceride contents and increased glycogen contents. The microarray results showed that when food was resupplied for 3 days, the liver TCA cycle (Tricarboxylic acid cycle) and oxidative phosphorylation processes were upregulated, while DNA replication and repair, as well as proteasome assembly were also activated. Integration of transcriptome and metabolome data highlighted transcriptionally driven alterations in metabolism during compensatory growth, such as altered glycolysis and lipid metabolism activities. The metabolome data also implied the participation of amino acid metabolism during compensatory growth in zebrafish liver. CONCLUSION: Our study provides a global resource for metabolic adaptations and their transcriptional regulation during refeeding in zebrafish liver. This study represents a first step towards understanding of the impact of metabolism on compensatory growth and will potentially aid in understanding the molecular mechanism associated with compensatory growth.


Assuntos
Jejum/metabolismo , Fígado/metabolismo , Metaboloma , Transcriptoma , Animais , Peso Corporal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Fígado/anatomia & histologia , Metabolômica , Análise de Sequência com Séries de Oligonucleotídeos , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
18.
ACS Nano ; 13(8): 8760-8765, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31374166

RESUMO

A material with reversible temperature change capability under an external electric field, known as the electrocaloric effect (ECE), has long been considered as a promising solid-state cooling solution. However, electrocaloric (EC) performance of EC materials generally is not sufficiently high for real cooling applications. As a result, exploring EC materials with high performance is of great interest and importance. Here, we report on the ECE of ferroelectric materials with van der Waals layered structure (CuInP2S6 or CIPS in this work in particular). Over 60% polarization charge change is observed within a temperature change of only 10 K at Curie temperature. Large adiabatic temperature change (|ΔT|) of 3.3 K and isothermal entropy change (|ΔS|) of 5.8 J kg-1 K-1 at |ΔE| = 142.0 kV cm-1 and at 315 K (above and near room temperature) are achieved, with a large EC strength (|ΔT|/|ΔE|) of 29.5 mK cm kV-1. The ECE of CIPS is also investigated theoretically by numerical simulation, and a further EC performance projection is provided.

19.
Gen Comp Endocrinol ; 281: 137-144, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31176753

RESUMO

The insulin-like growth factor (IGF) system plays a pivotal role in the regulation of growth, and IGF binding proteins (IGFBPs) are important regulatory factors in the IGF system. Generally, IGFBPs inhibit IGF actions by preventing its binding to receptors. Under some conditions, the IGFBPs can also enhance IGF actions. IGFBP1 is generally inhibitory to IGFI. In this study, the grouper (Epinephelus coioides) igfbp1 (MK621003) gene was cloned from the liver. The sequence of igfbp1 cDNA was 1055 bp and contained a 5'UTR of 127 bp and a 3'UTR of 247 bp, and the ORF of grouper igfbp1 was 741 bp, encoding 246 amino acids. The tissue distribution results showed that igfbp1 has a higher expression in the liver. In the nutritional status experiment, igfbp1 expression was significantly increased in the liver after 7 days of fasting and was markedly decreased after refeeding. In in vitro experiments, igfbp1 expression in grouper primary hepatocytes was significantly inhibited by recombinant grouper Gh (growth hormone) in a dose-dependent manner. Additionally, igfbp1 expression decreased in grouper primary hepatocytes upon incubation with insulin. This is the first report describing grouper igfbp1, and these findings contribute to understanding the roles of IGFBP1 in metabolism and growth in grouper.


Assuntos
Bass/genética , Hormônio do Crescimento/farmacologia , Hepatócitos/metabolismo , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Insulina/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Cultivadas , DNA Complementar/genética , Feminino , Hepatócitos/efeitos dos fármacos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/química , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Tecidual
20.
Gen Comp Endocrinol ; 265: 160-173, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29864417

RESUMO

As the close paralog of adiponectin, C1q/TNF-Related Protein 9 (CTRP9) has been reported to be involved in the regulation of glucose and fat metabolism, immunization and endothelial cell functions. However, information regarding the actions of Ctrp9 on reproduction is extremely limited in fish. As a first step, Ctrp9, adiponectin receptor 1 (Adipor1) and Adipor2 were identified from Nile tilapia. The open reading frame (ORF) of ctrp9 was 1020 bp which encoded a 339 amino acids. Moreover, the ORFs of adipor1 and adipor2 were 1131 bp and 1134 bp encoding 376 and 377 amino acids, respectively. Tissue distribution showed that ctrp9 mRNA levels were highest in the kidney in both sexes. And, the expression of adipor1 and adipor2 were widely distributed in all tissues examined, exhibiting high levels in the brain, gonad, gut and stomach. In addition, intraperitoneal (i.p.) injection of gCtrp9 (globular Ctrp9) suppressed the hypothalamic expression of gnrh2 (gonadotropin-releasing hormone 2) and gnrh3, as well as gthα (gonadotropic hormone α), fshß (follicle-stimulating hormone ß), lhß (luteinizing hormone ß), lhr (LH receptor) and fshr (FSH receptor) mRNA levels in the pituitary. The mRNA levels of adipor1, but not adipor2, in the gonads were also inhibited after injection. Moreover, the levels of serum E2 (estrogen) in female and T (testosterone) in male were significantly decreased after injection of gCtrp9. Overall, our data provides novel data indicating, for the first time, a regulatory effect of CTRP9 on teleost reproduction.


Assuntos
Adiponectina/genética , Ciclídeos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Receptores de Adiponectina/metabolismo , Reprodução/genética , Adiponectina/química , Adiponectina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Ciclídeos/sangue , Clonagem Molecular , Estradiol/sangue , Feminino , Masculino , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Adiponectina/química , Receptores de Adiponectina/genética , Análise de Sequência de DNA , Testosterona/sangue , Distribuição Tecidual/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...