Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(30): e2405160121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38976765

RESUMO

Due to the scarcity of rock samples, the Hadean Era predating 4 billion years ago (Ga) poses challenges in understanding geological processes like subaerial weathering and plate tectonics that are critical for the evolution of life. The Jack Hills zircon from Western Australia, the primary Hadean samples available, offer valuable insights into magma sources and tectonic genesis through trace element signatures. However, a consensus on these signatures has not been reached. To address this, we developed a machine learning classifier capable of deciphering the geochemical fingerprints of zircon. This allowed us to identify the oldest detrital zircon originating from sedimentary-derived "S-type" granites. Our results indicate the presence of S-type granites as early as 4.24 Ga, persisting throughout the Hadean into the Archean. Examining global detrital zircon across Earth's history reveals consistent supercontinent-like cycles from the present back to the Hadean. These findings suggest that a significant amount of Hadean continental crust was exposed, weathered into sediments, and incorporated into the magma sources of Jack Hills zircon. Only the early operation of both subaerial weathering and plate subduction can account for the prevalence of S-type granites we observe. Additionally, the periodic evolution of S-type granite proportions implies that subduction-driven tectonic cycles were active during the Hadean, at least around 4.2 Ga. The evidence thus points toward an early Earth resembling the modern Earth in terms of active tectonics and habitable surface conditions. This suggests the potential for life to originate in environments like warm ponds rather than extreme hydrothermal settings.

2.
Sci Rep ; 7(1): 7787, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798407

RESUMO

The Sanshandao gold deposit contains an estimated Au resource of >1500 tons, however little is known about the history of exhumation, and the magnitude of displacement on the ore-hosting fault. Structural measurement revealed two phases of normal and one phase of sinistral movement on the fault. Despite of intra-sample dispersions, (U-Th)/He ages from two sub-vertical profiles show decreasing trends from the surface down to -3560 m (zircon: 123 Ma to 55 Ma; apatite 103 Ma to 0.3 Ma). Over-dispersion of AHe ages likely reflects the presence of undetected inclusions. According to the age-depth pattern, we infer that the deposit underwent an early phase of rapid cooling in the late Early Cretaceous, which was followed by a short period of thermal stagnation and a revived rapid cooling between 75 Ma and 55 Ma in response to a combined effects of late normal movement and erosion. Since the Eocene, the deposit has experienced a slow monotonic cooling. Exhumation magnitude estimates suggest that the deposit have been denudated > 5.1 km. The two phases of normal displacement along the fault occurred in the late Early Cretaceous and Late Cretaceous to Paleocene, leading to a total offset magnitude of 0.5-2.3 km.

3.
Sci Bull (Beijing) ; 62(22): 1538-1546, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659432

RESUMO

To better understand the mechanism of Mg isotopic variation in magma systems, here we report high precision Mg isotopic data of 17 bulk rock samples including dunite, clinopyroxenite, hornblendite and gabbro and 10 pairs of dunite-hosted olivine and chromite separates from the well-characterized Alaskan-type Xiadong intrusion in NW China, which formed by continuous and high degree of lithological differentiation from mafic magmas. Chromite separates have highly variable δ26Mg values from -0.10‰ to 0.40‰, and are consistently heavier than coexisting olivine separates (-0.39‰ to -0.15‰). Both mineral δ26Mg values and the degrees of inter-mineral fractionation are well correlated with geochemical indicators of magma differentiation, indicating that these inter-sample and inter-mineral Mg isotope fractionations are caused by magma evolution. The δ26Mg values range from -0.20‰ to -0.02‰ in the dunite, -0.43‰ in the clinopyroxenite, -0.43‰ to -0.28‰ in the hornblendite, 0.18‰ in the chromite-bearing hornblendite, and -0.56‰ to -0.16‰ in the gabbro. The Mg isotopic variations in different types of rocks are closely related to fractional crystallization and accumulation of different proportions of oxides vs. silicates. Chromite crystallization and accumulation is the most important factor in controlling Mg isotope fractionation during the formation of the Xiadong intrusion. Compared to basaltic and granitic magmas, differentiation of the Alaskan-type intrusions occurs at a relatively high oxygen fugacity, which favors chromite crystallization and consequently significant Mg isotope fractionations at both mineral and whole-rock scales. Therefore, Mg isotope systematics can be used to trace the degree of magma differentiation and related-mineralization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...