Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 222: 114102, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641144

RESUMO

Furanocoumarins (FCs) are widely distributed secondary metabolites found in higher plants, including Apiaceae, Rutaceae, Moraceae, and Fabaceae. They play a crucial role in the physiological functions of plants and are well-known for their diverse pharmacological activities. As a representative plant of the Apiaceae family, Angelica sinensis is highly valued for its medicinal properties and FCs are one of the main ingredients of A. sinensis. However, the biosynthetic mechanism of FCs in A. sinensis remains poorly understood. In this study, we successfully cloned and verified three types of enzymes using genome analysis and in vitro functional verification, which complete the biosynthesis of the FCs core skeleton in A. sinensis. It includes a p-coumaroyl CoA 2'-hydroxylase (AsC2'H) responsible for umbelliferone formation, two UbiA prenyltransferases (AsPT1 and AsPT2) that convert umbelliferone to demethylsuberosin (DMS) and osthenol, respectively, and two CYP736 subfamily cyclases (AsDC and AsOD) that catalyze the formation of FCs core skeleton. Interestingly, AsOD was demonstrated to be a bifunctional cyclase and could catalyze both DMS and osthenol, but had a higher affinity to osthenol. The characterization of these enzymes elucidates the molecular mechanism of FCs biosynthesis, providing new insights and technologies for understanding the diverse origins of FCs biosynthesis.


Assuntos
Angelica sinensis , Furocumarinas , Furocumarinas/química , Furocumarinas/metabolismo , Furocumarinas/biossíntese , Angelica sinensis/química , Angelica sinensis/metabolismo , Estrutura Molecular
3.
J Ethnopharmacol ; 321: 117499, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042392

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Corydalis tomentella Franch. is a perennial cespitose plant commonly used to treat stomachaches as a folk medicine. The C. tomentella total alkaloids have good protective effects against acute liver injury and potential anti-hepatoma and anti-Alzheimer's disease activities. AIM OF THE STUDY: To establish an effective purification process for total alkaloids from C. tomentella and investigate the mechanism of their anti-inflammatory effects. MATERIALS AND METHODS: Corydalis tomentella were purified using macroporous resin. Then the crude and purified C. tomentella extracts (cCTE and pCTE) were qualitatively analyzed using UPLC-Triple-TOF-MS/MS. The cCTE and pCTE were used to investigate and compare their anti-inflammatory effects on lipopolysaccharide (LPS)-induced RAW264.7 cells. Doses at 100, 200 and 400 mg/kg/d of pCTE were used to study their anti-inflammatory and analgesic activities in mice with xylene-induced ear swelling and acetic acid-induced writhing tests. Content of nitric oxide (NO), interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) were determined both in RAW264.7 cells and mice. Network pharmacology was used to predict the anti-inflammatory mechanism of C. tomentella, and the key enzymes were validated using qPCR and Western Blot analysis. Concentration of intracellular Ca2+ was detected using flow cytometric analysis. RESULTS: The C. tomentella total alkaloid purity increased from 6.29% to 47.34% under optimal purification conditions. A total of 54 alkaloids were identified from CTE. Both cCTE and pCTE could suppress the LPS-induced production of NO, IL-6, IL-1ß, and TNF-α in RAW264.7 cells. The pCTE exhibited a more potent anti-inflammatory effect; it also inhibited pain induced by xylene and acetic acid in mice. The calcium signaling pathway is associated with the anti-inflammatory and analgesic activities of C. tomentella. The mRNA expression of nitric oxide synthase (NOS) 2, NOS3 and calmodulin1 (CALM1) was regulated by C. tomentella through the reduction of inflammation-induced Ca2+ influx, and it also exhibited a more pronounced effect than the positive control (L-NG-nitro arginine methyl ester). CONCLUSIONS: Purified C. tomentella extract shows anti-inflammatory effect both in vitro and in vivo. It exerts anti-inflammatory and analgesic effects through the calcium signaling pathway by down-regulating NOS2 and CALM1 expression and up-regulating NOS3 expression in LPS-induced RAW264.7 cells, and decreasing intracellular Ca2+ concentration.


Assuntos
Alcaloides , Corydalis , Camundongos , Animais , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Xilenos , Sinalização do Cálcio , Espectrometria de Massas em Tandem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Acetatos , Óxido Nítrico/metabolismo
4.
Front Plant Sci ; 14: 1228356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645462

RESUMO

Salvia plebeia (Lamiaceae) is a valuable medicinal plant widely distributed across Asia and Oceania. However, the composition and accumulation patterns of its active ingredients in different organs during the growth and their biosynthetic mechanism remain unknown. Therefore, we conducted metabolite profiling, transcriptomic analysis, and biological functional verification to explore the distribution, accumulation, and biosynthesis mechanisms of flavonoids in S. plebeia. We identified 70 metabolites including 46 flavonoids, 16 phenolic acids, seven terpenoids, and one organic acid, of which 21 were previously unreported in S. plebeia. Combining metabolomic-transcriptomic analysis and biological functional verification, we identified the key genes involved in biosynthesis of its main active ingredients, hispidulin and homoplantaginin, including SpPAL, SpC4H, Sp4CL2, Sp4CL5, SpCHS1, SpCHI, SpFNS, SpF6H1, SpF6OMT1, SpF6OMT2, SpUGT1, SpUGT2, and SpUGT3. Using the identified genes, we reconstructed the hispidulin and homoplantaginin biosynthesis pathways in Escherichia coli, and obtained a yield of 5.33 and 3.86 mg/L for hispidulin and homoplantaginin, respectively. Our findings provide valuable insights into the changes in chemical components in different organs of S. plebeia during different growth and harvest stages and establishes a foundation for identifying and synthesizing its active components.

5.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36657387

RESUMO

AIM: The main purpose of this study was to study the preventive effect of Penicillium sp. CX-1 on Phytophthora cactorum causing Salvia miltiorrhiza blight and its positive effect on plant growth. METHODS AND RESULTS: The endophytic strain CX-1 was isolated from the medicinal plant Corydalis saxicola Bunting and identified as Penicillium oxalicum. The growth inhibitory capacity of CX-1 against Ph. cactorum was 74.4% in the strain co-culture test and 86.2% in filtrate-modified plates. In the pot experiment, the in vivo control of CX-1 against Ph. cactorum in S. miltiorrhiza was 36.0%, which was higher than that of an anti-Phytophthora fungicide (23.4%). In addition, CX-1 had a potent ability to solubilize phosphate and also showed the ability to produce the plant hormone indole-3-acetic acid (IAA) and siderophores, which increase the bioavailability of iron to plants. It was demonstrated through pot experiments that CX-1 could significantly promote plant growth. As determined by real-time quantitative PCR, the expression of some S. miltiorrhiza tanshinone-related biosynthesis genes was significantly upregulated following colonization by CX-1. CONCLUSION: Strain CX-1 could effectively inhibit Ph. cactorum, the causative agent of S. miltiorrhiza blight, and significantly promoted the growth of plants through several different routes.


Assuntos
Penicillium , Phytophthora , Salvia miltiorrhiza , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/metabolismo , Raízes de Plantas
6.
Molecules ; 27(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35630799

RESUMO

Sesquiterpene lactones (STLs) from the cocklebur Xanthium sibiricum exhibit significant anti-tumor activity. Although germacrene A oxidase (GAO), which catalyzes the production of Germacrene A acid (GAA) from germacrene A, an important precursor of germacrene-type STLs, has been reported, the remaining GAOs corresponding to various STLs' biosynthesis pathways remain unidentified. In this study, 68,199 unigenes were studied in a de novo transcriptome assembly of X. sibiricum fruits. By comparison with previously published GAO sequences, two candidate X. sibiricum GAO gene sequences, XsGAO1 (1467 bp) and XsGAO2 (1527 bp), were identified, cloned, and predicted to encode 488 and 508 amino acids, respectively. Their protein structure, motifs, sequence similarity, and phylogenetic position were similar to those of other GAO proteins. They were most strongly expressed in fruits, according to a quantitative real-time polymerase chain reaction (qRT-PCR), and both XsGAO proteins were localized in the mitochondria of tobacco leaf epidermal cells. The two XsGAO genes were cloned into the expression vector for eukaryotic expression in Saccharomyces cerevisiae, and the enzyme reaction products were detected by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) methods. The results indicated that both XsGAO1 and XsGAO2 catalyzed the two-step conversion of germacrene A (GA) to GAA, meaning they are unlike classical GAO enzymes, which catalyze a three-step conversion of GA to GAA. This cloning and functional study of two GAO genes from X. sibiricum provides a useful basis for further elucidation of the STL biosynthesis pathway in X. sibiricum.


Assuntos
Xanthium , Clonagem Molecular , Oxirredutases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Sesquiterpenos de Germacrano , Xanthium/genética
7.
Chin Med ; 17(1): 54, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524264

RESUMO

BACKGROUND: The processing of medicinal plant materials is one of the important factors influencing the components and biological activities of TCMs. Smilax glabra Roxb. is an herbal vine widely distributed in China, and its dried rhizome (Smilacis Glabrae Rhizoma, SGR) is often used in traditional medicines and functional foods. The processing methods of fresh cutting for SGR slices have been included in ancient Chinese herbal works, some local standards of TCMs, and the current Chinese Pharmacopoeia. Nevertheless, to date, the scientific basis for the processing of fresh medicinal materials for SGR slices has not been revealed. METHODS: To optimize the processing method for preparing SGR slices from the fresh rhizomes, the chemical compositions of the un-pretreated and pretreated (boiling, steaming) samples before and after drying (sun-drying, shade-drying, oven-drying), and the contents of astilbin isomers in dried SGR were analyzed by UHPLC-Q-TOF-MS/MS and UHPLC-DAD methods, respectively. Then, the antioxidant, anti-inflammatory, xanthine oxidase and α-glucosidase inhibitory activities of the prepared SGR slices were investigated by biological assays. RESULTS: A total of fifty-two compounds were identified from the un-pretreated and pretreated samples and a total of forty-nine compounds were identified from the subsequently dried samples. After pretreated by boiling and steaming, the contents of neoastilbin, neoisoastilbin, and isoastilbin in the prepared samples all increased. As a quality marker of SGR, the content of astilbin was unchanged or decreased slightly compared with that in the un-pretreated samples. During the drying process, the contents of the four astilbin stereoisomers in the un-pretreated samples increased significantly, while those in the pretreated samples had a slight increase or decrease. The effects of different processing methods were sorted according to the bioactivities of the prepared SGR. As a result, SGR slices prepared with no pretreatment followed by a sun-drying process have a higher astilbin content, better bioactivities and more energy savings, representing the optimum processing method for SGR slices. CONCLUSIONS: This study reveals the scientific basis for the processing of fresh medicinal materials for SGR slices. The results provide scientific information for the quality control of SGR and its rational applications in herbal medicines and functional foods.

8.
Chin Med ; 17(1): 32, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241112

RESUMO

BACKGROUND: Viola philippica Cav. is the only original plant for Violae Herba, as described in the Chinese Pharmacopoeia. The quality of this crude drug is affected by several adulterants from congeneric Viola species, and the authentic plant origin of Violae Herba is still controversial. Genome-based identification offers abundant genetic information and potential molecular markers that can be used for the authentication of closely related species. This study aims to investigate the certified origin of Violae Herba and to develop more effective markers for these easily confused species at the genetic level. METHODS: We compared the morphology and chemical composition of 18 batches of commercial samples and six widespread medicinal Viola plants used as Violae Herba or its substitutes by TLC and HPLC-Triple-TOF-MS/MS analyses. The complete chloroplast genomes of these species were sequenced and analyzed, including the general features, repeat sequences, mutational hotspots and phylogeny. The complete chloroplast genomes used as superbarcodes and some specific barcodes screened from mutational hotspots were tested for their ability to distinguish Viola species. RESULTS: A comparative study showed that Violae Herba is a multi-origin traditional Chinese medicine. Commercial decoction pieces and the standard reference drug were mainly derived from V. prionantha, clashing with the record in the Chinese Pharmacopoeia. Chloroplast genome analyses of V. philippica and five adulterants indicated that sequence divergence was relatively low within Viola species. By tree-based approaches, the complete chloroplast genomes showed a better discrimination ability and phylogenetic resolution for each Viola species. These results indicate that the whole chloroplast genomes can be used as superbarcodes to differentiate Viola medicinal plants. More specific DNA barcodes could be further developed from the Viola chloroplast genomes for more efficient and rapid identification of commercial Violae Herba and its adulterants. CONCLUSIONS: This study has implications for chloroplast genome-based phylogenetic analysis and the authentication of multiple Viola species used as Violae Herba. The legal origin recorded in the Chinese Pharmacopoeia should be further revised to V. prionantha, in line with the commercial Violae Herba in the TCM markets.

9.
Mitochondrial DNA B Resour ; 6(11): 3098-3099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621986

RESUMO

Clerodendrum lindleyi Decne. ex Planch. is a Chinese medicinal plant in the Lingnan region of China. In this study, the complete chloroplast genome sequence of C. lindleyi was assembled and characterized from high-throughput sequencing data. The chloroplast genome is 151,678 bp in length, consisting of a large single-copy (LSC) and a small single-copy (SSC) regions of 83,043 bp and 17,311 bp, respectively, which are separated by a pair of 25,662 bp inverted repeat (IR) regions. The overall GC content of the genome is 38.18%. The genome contains 133 genes, including 88 protein-coding, 37 tRNA, and 8 rRNA genes. A phylogenetic tree reconstructed by using 16 chloroplast genomes reveals that C. lindleyi is most closely related to C. trichotomum which together forms a group that is a sister to genus Caryopteris. The work reported here is the first complete chloroplast genome of C. lindleyi which will provide useful information to the evolutionary studies on the genus of Clerodendrum.

10.
Mitochondrial DNA B Resour ; 6(7): 1888-1889, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34151009

RESUMO

Peristrophe japonica (Thunb.) Bremek. is a widely distributed medicinal plant species in China and Japan. In this study, the complete chloroplast genome sequence of P. japonica was assembled and characterized from high-throughput sequencing data. The chloroplast genome is 151,374 bp in length, consisting of a large single-copy (LSC) and a small single-copy (SSC) regions of 83,395 bp and 17,073 bp, respectively, which were separated by a pair of 25,453 bp inverted repeat (IR) regions. The overall GC content of the genome is 38.07%. The genome contains 133 genes, including 88 protein-coding, 37 tRNA, and eight rRNA genes. A phylogenetic tree reconstructed using 23 chloroplast genomes reveals that Peristrophe form a separate group which is a sister of the genus Dicliptera. The work reported here is the first complete chloroplast genome of P. japonica which will provide useful information to the evolutionary studies on the genus of Peristrophe.

11.
Molecules ; 26(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799348

RESUMO

Nasopharyngeal carcinoma (NPC) is a common malignant head and neck tumor. Drug resistance and distant metastasis are the predominant cause of treatment failure in NPC patients. Hispidulin is a flavonoid extracted from the bioassay-guided separation of the EtOH extract of Salvia plebeia with strong anti-proliferative activity in nasopharyngeal carcinoma cells (CNE-2Z). In this study, the effects of hispidulin on proliferation, invasion, migration, and apoptosis were investigated in CNE-2Z cells. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay and the colony formation assay revealed that hispidulin could inhibit CNE-2Z cell proliferation. Hispidulin (25, 50, 100 µM) also induced apoptosis in a dose-dependent manner in CNE-2Z cells. The expression of Akt was reduced, and the expression of the ratio of Bax/Bcl-2 was increased. In addition, scratch wound and transwell assays proved that hispidulin (6.25, 12.5, 25 µM) could inhibited the migration and invasion in CNE-2Z cells. The expressions of HIF-1α, MMP-9, and MMP-2 were decreased, while the MMPs inhibitor TIMP1 was enhanced by hispidulin. Moreover, hispidulin exhibited potent suppression tumor growth and low toxicity in CNE-2Z cancer-bearing mice at a dosage of 20 mg/kg/day. Thus, hispidulin appears to be a potentially effective agent for NPC treatment.


Assuntos
Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Flavonas/farmacologia , Flavonoides/farmacologia , Carcinoma Nasofaríngeo/tratamento farmacológico , Salvia/química , Animais , Linhagem Celular Tumoral , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Invasividade Neoplásica/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo
12.
Front Plant Sci ; 12: 632557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633770

RESUMO

In many plants, isoflavones are the main secondary metabolites that have various pharmacological activities, but the low water solubility of aglycones limits their usage. The O-glycosylation of (iso)flavones is a promising way to overcome this barrier. O-glycosyltransferases (UGTs) are key enzymes in the biosynthesis of (iso)flavonoid O-glycosides in plants. However, limited investigations on isoflavonoid O-UGTs have been reported, and they mainly focused on legumes. Iris domestica (L.) Goldblatt et Mabberley is a non-legume plant rich in various isoflavonoid glycosides. However, there are no reports regarding its glycosylation mechanism, despite the I. domestica transcriptome previously being annotated as having non-active isoflavone 7-O-UGTs. Our previous experiments indicated that isoflavonoid glycosides were induced by CuCl2 in I. domestica calli; therefore, we hypothesized that isoflavone O-UGTs may be induced by Cu2+. Thus, a comparative transcriptome analysis was performed using I. domestica seedlings treated with CuCl2, and eight new active BcUGTs were obtained. Biochemical analyses showed that most of the active BcUGTs had broad substrate spectra; however, substrates lacking 5-OH were rarely catalyzed. Real-time quantitative PCR results further indicated that the transcriptional levels of BcUGTs were remarkably induced by Cu2+. Our study increases the understanding of UGTs and isoflavone biosynthesis in non-legume plants.

13.
J Pharm Biomed Anal ; 186: 113307, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32375107

RESUMO

The roots of Scrophularia ningpoensis are used as traditional medicines for thousands of years in China, nevertheless the stems and leaves were discarded as non-medicinal parts. Modern research have indicated the chemical constituents in the stems and leaves are similar to the identified in the roots, and the therapeutic effects of stems and leaves are superior to roots for some disease. In the study, the chemical constituents in roots, stems and leaves of S. ningpoensis were analyzed qualitatively by HPLC-Q-TOF-MS/MS. 40 compounds including 17 iridoid glycosides, 15 phenylpropanoids and 8 flavonoids were identified. Meantime, the dynamic accumulations of six index constituents in various parts were measured by HPLC-DAD. The results indicated the S. ningpoensis stems contained high content of aucubin (30.09 mg/g) and harpagide (28.4 mg/g) in August, and the leaves contained high content of harpagoside (12.02 mg/g) in July. The study provides the basis for the full development and utilization of the resource of stems and leaves from S. ningpoensis.


Assuntos
Flavonoides/análise , Glicosídeos Iridoides/análise , Fenilpropionatos/análise , Scrophularia/química , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/metabolismo , Glicosídeos Iridoides/metabolismo , Fenilpropionatos/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Caules de Planta/química , Caules de Planta/metabolismo , Scrophularia/metabolismo , Metabolismo Secundário , Espectrometria de Massas em Tandem/métodos
14.
J Sep Sci ; 43(8): 1450-1457, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32031325

RESUMO

Buddleja officinalis Maxim., a deciduous, flowering shrub, is used as a traditional Chinese medicine; the bioactivity of B. officinalis is primarily due to flavonoids and phenylethanoid glycosides. In the study, acteoside and linarin were successfully isolated from B. officinalis by high-speed countercurrent chromatography with a two-phase solvent system composed of ethyl acetate: n-butanol: water (5:0.8:5, v/v/v). The purities of acteoside and linarin were determined to be 97.3 and 98.2%, respectively, using one-step high-speed countercurrent chromatography separation. The chemical structures of the two compounds were identified by electrospray ionization-mass spectrometry and nuclear magnetic resonance. After separation, the anti-inflammatory effects of the two compounds were evaluated using lipopolysaccharide-induced human umbilical vein endothelial cells. Acteoside and linarin inhibited the expression of nitric oxide, tumor necrosis factor α and interleukin 1ß, which demonstrated that acteoside and linarin possessed anti-inflammatory activity.


Assuntos
Anti-Inflamatórios/farmacologia , Flores/química , Glucosídeos/farmacologia , Glicosídeos/farmacologia , Loganiaceae/química , Óxido Nítrico/antagonistas & inibidores , Fenóis/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Células Cultivadas , Distribuição Contracorrente , Glucosídeos/química , Glucosídeos/isolamento & purificação , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Medicina Tradicional Chinesa , Estrutura Molecular , Óxido Nítrico/biossíntese , Fenóis/química , Fenóis/isolamento & purificação
15.
J Pharm Biomed Anal ; 164: 283-295, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30412801

RESUMO

The dried flowers and inflorescences of Buddleja officinalis Maxim are used as traditional medicines in China, and aqueous extracts of the flowers have also been used since ancient times as a yellow rice colorant at local festivals. In this study, HPLC-Q-TOF-MS/MS was used to determine the overall chemical composition of this medicine-food plant. A total of 54 compounds, including 23 flavonoids, 19 phenylethanoid glycosides, 7 alkaloids and 5 other compounds, were detected in the methanol extracts of the herb using this method. Among them, 35 compounds were found firstly in this herb. HPLC fingerprints were also developed, together with a method for the simultaneous quantification of 11 constituents that could be used for quality evaluation of B. officinalis. Fingerprint analysis, using 28 characteristic fingerprint peaks, was used to assess the similarities among 12 samples collected from different geographic areas and showed that the similarity was >0.900. Simultaneous quantification of 11 markers in B. officinalis was then performed to determine consistency of quality. Additionally, the total phenolic content and antioxidant capacity of extracts of the 12 samples of B. officinalis flowers were measured using spectroscopic methods. B. officinalis was found to have good antioxidant capacity and to be a potential natural antioxidant. The highest antioxidant capacity was found in the samples from Guizhou, Sichuan and Guangxi Province. Our results provide valuable information for further understanding and exploiting the herb.


Assuntos
Antioxidantes/análise , Buddleja/química , Fracionamento Químico/métodos , Medicamentos de Ervas Chinesas/análise , Extratos Vegetais/análise , Alcaloides/análise , Alcaloides/química , Alcaloides/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Fracionamento Químico/instrumentação , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/análise , Flavonoides/química , Flavonoides/farmacologia , Flores/química , Glicosídeos/análise , Glicosídeos/química , Glicosídeos/farmacologia , Metanol/química , Fenóis/análise , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Controle de Qualidade , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
16.
Molecules ; 23(12)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30567397

RESUMO

Iris lactea Pall. var. chinensis (Fisch.) Koidz. is a traditional medicinal plant resource. To make full use of the I. lactea plant resources, constituents of I. lactea leaves were determined by high performance liquid chromatography (HPLC)-quadrupole time-of-flight tandem mass spectrometry and 22 C-glycosylflavones were identified or tentatively identified. Optimal extraction of I. lactea leaves was established via single factor investigations combined with response surface methodology. Then, HPLC coupled with a diode array detector was used to quantitatively analyze the six main components of 14 batches of I. lactea leaves grown in different areas. The results showed the C-glycosylflavones were the main components of I. lactea leaves, and the total contents of detected components were relatively stable for the majority of samples. These results provide a foundation for the development and utilization of I. lactea leaves.


Assuntos
Cromatografia Líquida/métodos , Flavonas/análise , Gênero Iris/química , Folhas de Planta/química , Espectrometria de Massas em Tandem/métodos
17.
Pharmacol Res ; 136: 62-73, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30144531

RESUMO

Sirtuin 1 (SirT1) and signal transducer and activator of transcription 3 (STAT3) oppositely regulate hepatic gluconeogenic genes and the association remains to be elucidated. Baicalin is a natural flavonoid with beneficial effects on glucose and lipid metabolism. This study aims to investigate the effect of baicalin on hepatic gluconeogenesis with focus on the regulation of fatty acid mobilization and SirT1/STAT3 pathway. In HFD feeding or fasting state, hepatic gluconeogenesis and fatty acid oxidation induced SirT1 expression due to the increased nicotinamide adenine dinucleotide+ (NAD+) contents. Baicalin reduces endogenous glucose production via suppression of hepatic gluconeogenesis and decreased SirT1 induction via reducing NAD+ accumulation in an energy-sensing way. Fasting increased SirT1 protein in STAT3 immunoprecipitation products and less in the liver of baicalin-treated mice, indicating that baicalin blocked the binding of SirT1 to STAT3 and thus preserved STAT3 acetylation. SirT1 knockdown enhanced the protective effect of baicalin on pyruvate-induced STAT3 phosphorylation and acetylation, these results further indicated that the regulation of STAT3 activity by baicalin was dependent on SirT1. Moreover, HFD feeding increased gene expression for PGC-1α in the liver, but the transcriptional regulation was inhibited by baicalin treatment. SirT1 overexpression and STAT3 inhibition enhanced pyruvate-mediated PGC-1α gene expression, suggesting that deacetylation of STAT3 by SirT1 is required for PGC-1α activity on hepatic gluconeogenesis. Taken together, these results showed that baicalin restrained HGP via inhibiting SirT1 activity coupled with STAT3 acetylation and subsequent PGC-1α suppression, suggesting that hepatic SirT1 and STAT3 pathway may provide therapeutic advantages for the control of hyperglycemia.


Assuntos
Flavonoides/farmacologia , Glucose/metabolismo , Fígado/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Sirtuína 1/metabolismo , Acetilação/efeitos dos fármacos , Animais , Células Cultivadas , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/genética
18.
Front Plant Sci ; 9: 1160, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154811

RESUMO

Belamcanda chinensis (L.) DC., a perennial herb of the family Iridaceae, is rich in a variety of (iso)flavonoids with significant organ-specific distribution and has a swollen rhizome that is widely used in East Asia as a traditional medicine. In the present study, comprehensive transcriptomes of six organs (root, rhizome, aerial stem, leaf, flower, and young fruit) of B. chinensis were obtained by high-throughput RNA-sequencing and de novo assembly. A total of 423,661 unigenes (mean length = 618 bp, median length = 391 bp) were assembled and annotated in seven databases: Non-redundant protein sequences, Nucleotide sequences, Swiss-Prot, Protein family database, euKaryotic Ortholog Groups, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO). A total of 4995 transcription factors were identified, including 408 MYB, 182 bHLH, 277 AP2/ERF, and 228 WRKY genes. A total of 129 cytochrome P450 unigenes belonging to 10 divergent clans were identified and grouped into clades in a phylogenetic tree that showed their inferred evolutionary relationship. Differentially expressed unigenes among the six organs were subjected to GO and KEGG enrichment analysis to profile the functions of each organ. Unigenes associated with (iso)flavonoid biosynthesis were then profiled by expression level analysis. Additionally, the complete coding sequences of six predicted enzymes essential to the (iso)flavonoid pathway were obtained, based on the annotated unigenes. This work reveals clear differences in expression patterns of genes among the six organs and will provide a sound platform to understand the (iso)flavonoid pathways in B. chinensis.

19.
Zhongguo Zhong Yao Za Zhi ; 43(8): 1563-1570, 2018 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-29751701

RESUMO

Raffinose series oligosaccharides are the transport and storage sugars of many plants, Rehmannia glutinosa is one of the commonly used Chinese herbal medicines, medicinal parts ist he roots. Root and tuber of R. glutinosa contains stachyose, raffinose and other oligosaccharides, but the study about the process of growth and development of other organs in the non-structural changes in sugar content is rare.In this study, leaves, stems and roots of R. glutinosa were used as materials to analyze the diurnal variation and the changes of sugar content of sucrose, raffinose and stachyose in different organs of R. glutinosa. The results showed that the content of sucrose in R. glutinosa leaves gradually increased from seedling stage.However, the content of stachyose did not change much at the early stage of growth, and the stachyose rapidly increased at the later stage of growth. The raffinose content gradually decreased throughout the growing season, young leaves of R. glutinosa have higher ability to sucrose synthesis than mature leaves, while mature leaf has higher raffinose and stachyose synthesis ability than young leaves. Sucrose and stachyose content in stem gradually increased, while there was little change in raffinose content. The content of raffinose and stachyose in root increased rapidly from the beginning of fast growing period, while the content of sucrose did not change much. The content of sucrose in leaves of R. glutinosa did not change much at day and night, while the daily changes of raffinose and stachyose contents were very obvious. The contents of raffinose and stachyose in daytime were higher than those at night. The content of raffinose in root and stem was not changed much, but the change of stachyose in root, stem and leaf was very obvious, especially in stem and leaf. In summary, the leaf is the main synthetic organ of raffinose, leaves, stems and roots are stachyose synthesis organ. Sucrose, raffinose and stachyose are the major transport forms of carbohydrates in R. glutinosa.


Assuntos
Rehmannia , Carboidratos , Humanos , Masculino , Oligossacarídeos , Folhas de Planta
20.
Molecules ; 23(2)2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462853

RESUMO

Scutellaria baicalensis Georgi is a traditional Chinese herbal medicine mainly containing flavonoids that contribute to its bioactivities. In this study, the distributions and dynamic changes of flavonoid levels in various organs of S. baicalensis at different development stages were investigated by UHPLC-QTOF-MS/MS and HPLC-DAD methods. The results indicated that the metabolic profiles of S. baicalensis changed with growth and development. During the initial germination stage, the seeds mainly contained flavonols. With growth, the main kinds of flavonoids in S. baicalensis changed from flavonols to flavanones and flavones. The results also revealed that the accumulation of flavonoids in S. baicalensis is organ-specific. The flavones without 4'-OH groups mainly accumulate in the root and the flavanones mainly accumulate in aerial organs. Dynamic accumulation analysis showed that the main flavonoids in the root of S. baicalensis accumulated rapidly before the full-bloom stage, then changed to a small extent. The results suggested the proper harvest time for the aerial parts was at the initial stage of reproductive growth and the flower buds should be collected before flowering. This study deepening the knowledge of S. baicalensis should provide valuable information for guiding the scientific cultivation of this plant and the development and utilization of S. baicalensis.


Assuntos
Flavonoides/química , Flavonóis/química , Extratos Vegetais/química , Scutellaria baicalensis/química , Cromatografia Líquida de Alta Pressão , Flavonoides/isolamento & purificação , Germinação , Medicina Tradicional Chinesa , Raízes de Plantas/química , Scutellaria baicalensis/crescimento & desenvolvimento , Sementes/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...