Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28280, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560173

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) ravaged the world, and Coronavirus Disease 2019 (COVID-19) exhibited highly prevalent oral symptoms that had significantly impacted the lives of affected patients. However, the involvement of four human coronavirus (HCoVs), namely SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-229E, in oral cavity infections remained poorly understood. We integrated single-cell RNA sequencing (scRNA-seq) data of seven human oral tissues through consistent normalization procedure, including minor salivary gland (MSG), parotid gland (PG), tongue, gingiva, buccal, periodontium and pulp. The Seurat, scDblFinder, Harmony, SingleR, Ucell and scCancer packages were comprehensively used for analysis. We identified specific cell clusters and generated expression profiles of SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) in seven oral regions, providing direction for predicting the tropism of four HCoVs for oral tissues, as well as for dental clinical treatment. Based on our analysis, it appears that various SCARFs, including ACE2, ASGR1, KREMEN1, DPP4, ANPEP, CD209, CLEC4G/M, TMPRSS family proteins (including TMPRSS2, TMPRSS4, and TMPRSS11A), and FURIN, are expressed at low levels in the oral cavity. Conversely, BSG, CTSB, and CTSL exhibit enrichment in oral tissues. Our study also demonstrates widespread expression of restriction factors, particularly IFITM1-3 and LY6E, in oral cells. Additionally, some replication, assembly, and trafficking factors appear to exhibit broad oral tissues expression patterns. Overall, the oral cavity could potentially serve as a high-risk site for SARS-CoV-2 infection, while displaying a comparatively lower degree of susceptibility towards other HCoVs (including SARS-CoV, MERS-CoV and HCoV-229E). Specifically, MSG, tongue, and gingiva represent potential sites of vulnerability for four HCoVs infection, with the MSG exhibiting a particularly high susceptibility. However, the expression patterns of SCARFs in other oral sites demonstrate relatively intricate and may only be specifically associated with SARS-CoV-2 infection. Our study sheds light on the mechanisms of HCoVs infection in the oral cavity as well as gains insight into the characteristics and distribution of possible HCoVs target cells in oral tissues, providing potential therapeutic targets for HCoVs infection in the oral cavity.

2.
Front Immunol ; 14: 1156038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292206

RESUMO

The vulnerability of the oral cavity to SARS-CoV-2 infection is well-known, and cancer patients are at a higher risk of COVID-19, emphasizing the need to prioritize this patient population. Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant cancers associated with early metastasis and poor prognosis. It has been established that cancerous tissues express Cathepsin L (CTSL), a proteinase that regulates cancer progression and SARS-CoV-2 entry. Therefore, it is essential to evaluate the correlation between disease outcomes and CTSL expression in cancer tissues and predict the susceptibility of cancer patients to SARS-CoV-2. In this study, we used transcriptomic and genomic data to profile CTSL expression in HNSCC and developed a CTSL signature that could reflect the response of HNSCC patients to chemotherapy and immunotherapy. Additionally, we investigated the relationship between CTSL expression and immune cell infiltration and established CTSL as a potential carcinogenic factor for HNSCC patients. These findings could aid in understanding the mechanisms underlying the increased susceptibility of HNSCC patients to SARS-CoV-2 and contribute to the development of therapy for both HNSCC and COVID-19.


Assuntos
COVID-19 , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , SARS-CoV-2 , Catepsina L/genética , Neoplasias de Cabeça e Pescoço/genética
3.
Photodiagnosis Photodyn Ther ; 42: 103565, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37044169

RESUMO

Oral epithelial dysplasia (OED) in oral potentially malignant disorders (OPMDs) increases the risk of malignant transformation. However, the management of OED is not well defined. Photodynamic therapy (PDT) is a hypotoxic, highly selective and minimally-invasive operation which reduces morbidity and disfigurement greatly. Additionally, laser ablation guaranteed a better penetration for topical application of 5-aminolaevulinic acid (ALA)-PDT. Herein, we present a case of a large lesion of oral leukoplakia (OLK) in left tongue dorsum and lateral margin, pathologically manifested as severe epithelial dysplasia (SED). We firstly discussed the feasibility of Er: YAG laser assisted PDT for the treatment of SED in OPMDs. The patient achieved complete remission at 1 year follow-up. Downregulated number of p53 and Ki67 positive cells were observed in the tissues after Er: YAG laser assisted PDT. In addition, increased CD8+ positive cells infiltrated around the tissues and increased natural killer (NK) cells level were detected in the peripheral blood. In summary, Erbium:yttrium-aluminum-garnet (Er:YAG) laser assisted PDT is an effective and promising treatment for the management of SED in OPMDs with innate and adaptive immune responses.


Assuntos
Carcinoma in Situ , Terapia a Laser , Lasers de Estado Sólido , Fotoquimioterapia , Lesões Pré-Cancerosas , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Lasers de Estado Sólido/uso terapêutico , Ácido Aminolevulínico/uso terapêutico , Lesões Pré-Cancerosas/tratamento farmacológico , Carcinoma in Situ/tratamento farmacológico , Imunidade
4.
J Oncol ; 2022: 1434565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457716

RESUMO

Pyroptosis is associated with the biological behavior of the tumor and with tumor immunity. We investigated the effect of pyroptosis on the tumor microenvironment and tumor immunity in head and neck squamous cell carcinoma (HNSCC). RNA sequencing data and clinical information of HNSCC were downloaded from TCGA. Differentially expressed pyroptosis-related genes in HNSCC were identified between HNSCC and normal tissue. Pyroptosis-related classification of HNSCC was conducted based on consensus clustering analysis. LASSO-Cox regression analysis was used to construct a prognostic risk model-based pyroptosis-related gene. Evaluation of the immune microenvironment was conducted in prognostic risk signature based on pyroptosis-related genes. Total 22 differentially expressed pyroptosis-related genes were identified in HNSCC. Six prognostic-related genes were included to construct a LASSO regression model with a prognostic risk score = (0.133 ∗ GSDME (DFNA5) + 0.084 ∗ NOD1 + 0.039 ∗ IL6 + 0.003 ∗ IL1B + 0.084 ∗ CASP3 + 0.028 ∗ NLRP2). Higher fraction of resting memory CD4+ T cells and macrophages M1 was infiltrated in the high-risk group compared with the low-risk group in HNSCC. Furthermore, the PI3K-Akt signaling pathway and the IL-17 signaling pathways were identified to be involved in the development of high-risk HNSCC. Our study constructed a prognostic risk signature based on pyroptosis-related genes, which emphasizes the critical importance of pyroptosis in HNSCC and provided a novel perspective of HNSCC therapy.

5.
Front Cell Neurosci ; 16: 1006977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687524

RESUMO

Coronavirus disease 2019 (COVID-19) was reported to be associated with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, and patients present mostly with respiratory symptoms. There have been an increasing number of reports on oral manifestations, and some of these signs are informative in terms of identifying SARS-CoV-2 infection. The goal of present study was to review and synthesize the clinical characteristics and underlying mechanisms of COVID-19 oral manifestations, as well as to evaluate the factors influencing SARS-CoV-2 infectivity, in order to conduct further in-depth investigations and help clinicians diagnose COVID-19 patients exhibiting oral symptoms.

6.
Cell Reprogram ; 23(5): 270-276, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34491831

RESUMO

The osteogenic differentiation of mesenchymal stem cells (MSCs) is strongly related with the inflammatory microenvironment. The ability of osteogenic differentiation of MSCs is vital for the bone tissue engineering. Interleukin (IL)-10, a well-known anti-inflammatory factor, plays a key role in tissue repair. Dental pulp stem cells (DPSCs), with the advantage of convenience of extraction, are suitable for the bone tissue engineering. Therefore, it is meaning to explore the effects of IL-10 on the osteogenic differentiation of DPSCs. The proliferation activity of DPSCs were evaluated by MTS assay (CellTiter 96® Aqueous One Solution Cell Proliferation Assay [Promega]) and real-time polymerase chain reaction (RT-PCR). The osteogenic differentiation of DPSCs were determined by Alizarin Red staining, RT-PCR, and alkaline phosphatase activity test. The glucose metabolism was detected by Mito Stress test and glycolysis assay. IL-10 (10 or 20 nM) could enhance the osteogenic differentiation of DPSCs and promoted the metabolic switch from glycolysis to oxidative phosphorylation (OXPHOS), whereas IL-10 (5 and 50 nM) has no obvious effects on the osteogenic differentiation of DPSCs. The OXPHOS inhibitor restrained the promotion of osteogenic differentiation induced by IL-10. These findings show that IL-10 can promote the osteogenesis of DPSCs through the activation of OXPHOS, which provides a potential way for enhancing the osteogenic differentiation of DPSCs in bone tissue engineering.


Assuntos
Diferenciação Celular , Polpa Dentária/citologia , Glicólise , Interleucina-10/farmacologia , Osteogênese , Fosforilação Oxidativa , Células-Tronco/citologia , Adolescente , Adulto , Proliferação de Células , Células Cultivadas , Polpa Dentária/efeitos dos fármacos , Polpa Dentária/metabolismo , Humanos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Engenharia Tecidual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...