Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; : 118590, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39029542

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia stechmanniana Besser, one of the most prevalent botanical medicines in Chinese, has been traditionally used for hepatitis treatment. However, the bioactive components and pharmacological mechanism on alcohol-induced liver injury remains unclear. AIM OF THE STUDY: To investigate the effect of A. stechmanniana on alcohol-induced liver damage, and further explore its mechanism. MATERIALS AND METHODS: Phytochemical isolation and structural identification were used to determine the chemical constituents of A. stechmanniana. Then, the alcohol-induced liver damage animal and cell model were established to evaluate its hepato-protective potential. Network pharmacology, molecular docking and bioinformatics were integrated to explore the mechanism and then the prediction was further supported by experiments. Moreover, both compounds were subjected to ADMET prediction through relevant databases. RESULTS: 28 compounds were isolated from the most bioactive fraction, ethyl acetate extract A. stechmanniana, in which five compounds (abietic acid, oplopanone, oplodiol, hydroxydavanone, linoleic acid) could attenuate mice livers damage caused by alcohol intragastration, reduce the degree of oxidative stress, and serum AST and ALT, respectively. Furthermore, abietic acid and hydroxydavanone exhibited best protective effect against alcohol-stimulated L-O2 cells injury among five bioactive compounds. Network pharmacology and bioinformatics analysis suggested that abietic acid and hydroxydavanone exhibiting drug likeliness characteristics, were the principal active compounds acting on liver injury treatment, primarily impacting to cell proliferation, oxidative stress and inflammation-related PI3K-AKT signaling pathways. Both of them displayed strong binding energies with five target proteins (HRAS, HSP90AA1, AKT1, CDK2, NF-κB p65) via molecular docking. Western blotting results further supported the predication with up-regulation of protein expressions of CDK2, and down-regulation of HRAS, HSP90AA1, AKT1, NF-κB p65 by abietic acid and hydroxydavanone. CONCLUSION: Alcohol-induced liver injury protection by A. stechmanniana was verified in vivo and in vitro expanded its traditional use, and its two major bioactive compounds, abietic acid and hydroxydavanone exerted hepatoprotective effect through the regulation of PI3K-AKT signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...