Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(24): e202402684, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597346

RESUMO

Electrocatalytic urea synthesis under ambient conditions offers a promising alternative strategy to the traditional energy-intensive urea industry protocol. Limited by the electrostatic interaction, the reduction reaction of anions at the cathode in the electrocatalytic system is not easily achievable. Here, we propose a novel strategy to overcome electrostatic interaction via pulsed electroreduction. We found that the reconstruction-resistant CuSiOx nanotube, with abundant atomic Cu-O-Si interfacial sites, exhibits ultrastability in the electrosynthesis of urea from nitrate and CO2. Under a pulsed potential approach with optimal operating conditions, the Cu-O-Si interfaces achieve a superior urea production rate (1606.1 µg h-1 mgcat. -1) with high selectivity (79.01 %) and stability (the Faradaic efficiency is retained at 80 % even after 80 h of testing), outperforming most reported electrocatalytic synthesis urea catalysts. We believe our strategy will incite further investigation into pulsed electroreduction increasing substrate transport, which may guide the design of ambient urea electrosynthesis and other energy conversion systems.

2.
Sci Rep ; 14(1): 527, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177198

RESUMO

Lung adenocarcinoma (LUAD) is a malignant tumor with high lethality, and the aim of this study was to identify promising biomarkers for LUAD. Using the TCGA-LUAD dataset as a discovery cohort, a novel joint framework VAEjMLP based on variational autoencoder (VAE) and multilayer perceptron (MLP) was proposed. And the Shapley Additive Explanations (SHAP) method was introduced to evaluate the contribution of feature genes to the classification decision, which helped us to develop a biologically meaningful biomarker potential scoring algorithm. Nineteen potential biomarkers for LUAD were identified, which were involved in the regulation of immune and metabolic functions in LUAD. A prognostic risk model for LUAD was constructed by the biomarkers HLA-DRB1, SCGB1A1, and HLA-DRB5 screened by Cox regression analysis, dividing the patients into high-risk and low-risk groups. The prognostic risk model was validated with external datasets. The low-risk group was characterized by enrichment of immune pathways and higher immune infiltration compared to the high-risk group. While, the high-risk group was accompanied by an increase in metabolic pathway activity. There were significant differences between the high- and low-risk groups in metabolic reprogramming of aerobic glycolysis, amino acids, and lipids, as well as in angiogenic activity, epithelial-mesenchymal transition, tumorigenic cytokines, and inflammatory response. Furthermore, high-risk patients were more sensitive to Afatinib, Gefitinib, and Gemcitabine as predicted by the pRRophetic algorithm. This study provides prognostic signatures capable of revealing the immune and metabolic landscapes for LUAD, and may shed light on the identification of other cancer biomarkers.


Assuntos
Adenocarcinoma de Pulmão , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Prognóstico , Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Neoplasias Pulmonares/genética
3.
Front Endocrinol (Lausanne) ; 14: 1270772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955007

RESUMO

Introduction: Lung cancer is a major cause of illness and death worldwide. Lung adenocarcinoma (LUAD) is its most common subtype. Metabolite-mRNA interactions play a crucial role in cancer metabolism. Thus, metabolism-related mRNAs are potential targets for cancer therapy. Methods: This study constructed a network of metabolite-mRNA interactions (MMIs) using four databases. We retrieved mRNAs from the Tumor Genome Atlas (TCGA)-LUAD cohort showing significant expressional changes between tumor and non-tumor tissues and identified metabolism-related differential expression (DE) mRNAs among the MMIs. Candidate mRNAs showing significant contributions to the deep neural network (DNN) model were mined. Using MMIs and the results of function analysis, we created a subnetwork comprising candidate mRNAs and metabolites. Results: Finally, 10 biomarkers were obtained after survival analysis and validation. Their good prognostic value in LUAD was validated in independent datasets. Their effectiveness was confirmed in the TCGA and an independent Clinical Proteomic Tumor Analysis Consortium (CPTAC) dataset by comparison with traditional machine-learning models. Conclusion: To summarize, 10 metabolism-related biomarkers were identified, and their prognostic value was confirmed successfully through the MMI network and the DNN model. Our strategy bears implications to pave the way for investigating metabolic biomarkers in other cancers.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Proteômica , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Biomarcadores , RNA Mensageiro/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768566

RESUMO

Drug repositioning aims to discover novel clinical benefits of existing drugs, is an effective way to develop drugs for complex diseases such as cancer and may facilitate the process of traditional drug development. Meanwhile, network-based computational biology approaches, which allow the integration of information from different aspects to understand the relationships between biomolecules, has been successfully applied to drug repurposing. In this work, we developed a new strategy for network-based drug repositioning against cancer. Combining the mechanism of action and clinical efficacy of the drugs, a cancer-related drug similarity network was constructed, and the correlation score of each drug with a specific cancer was quantified. The top 5% of scoring drugs were reviewed for stability and druggable potential to identify potential repositionable drugs. Of the 11 potentially repurposable drugs for non-small cell lung cancer (NSCLC), 10 were confirmed by clinical trial articles and databases. The targets of these drugs were significantly enriched in cancer-related pathways and significantly associated with the prognosis of NSCLC. In light of the successful application of our approach to colorectal cancer as well, it provides an effective clue and valuable perspective for drug repurposing in cancer.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Reposicionamento de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biologia Computacional
5.
Biology (Basel) ; 11(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36138770

RESUMO

Lung adenocarcinoma is the most common type of primary lung cancer, but the regulatory mechanisms during carcinogenesis remain unclear. The identification of regulatory modules for lung adenocarcinoma has become one of the hotspots of bioinformatics. In this paper, multiple deep neural network (DNN) models were constructed using the expression data to identify regulatory modules for lung adenocarcinoma in biological networks. First, the mRNAs, lncRNAs and miRNAs with significant differences in the expression levels between tumor and non-tumor tissues were obtained. MRNA DNN models were established and optimized to mine candidate mRNAs that significantly contributed to the DNN models and were in the center of an interaction network. Another DNN model was then constructed and potential ceRNAs were screened out based on the contribution of each RNA to the model. Finally, three modules comprised of miRNAs and their regulated mRNAs and lncRNAs with the same regulation direction were identified as regulatory modules that regulated the initiation of lung adenocarcinoma through ceRNAs relationships. They were validated by literature and functional enrichment analysis. The effectiveness of these regulatory modules was evaluated in an independent lung adenocarcinoma dataset. Regulatory modules for lung adenocarcinoma identified in this study provided a reference for regulatory mechanisms during carcinogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...