Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(8): 13154-13168, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157459

RESUMO

In this paper, a joint signal processing scheme including a subband multiple-mode full permutation carrierless amplitude phase modulation (SMMP-CAP), signal-to-noise ratio weighted detector (SNR-WD), and multi-channel decision feedback equalizer (MC-DFE) is proposed to mitigate the bandwidth limitation of a high-speed long-reach underwater wireless optical communication (UWOC) system. Referring to the trellis coded modulation (TCM) subset division strategy, 16 quadrature amplitude modulation (QAM) mapping set is divided into four 4-QAM mapping subsets by SMMP-CAP scheme. An SNR-WD and an MC-DFE are employed to enhance the demodulation effect of this system in a fading channel. In a laboratory experiment, the minimal required received optical powers (ROPs) for data rates of 480 Mbps, 600 Mbps, and 720 Mbps, at hard-decision forward error correction (HD-FEC) threshold of 3.80 × 10-3, are -32.7 dBm, -31.3 dBm, and -25.5 dBm, respectively. Moreover, the proposed system successfully achieves a data rate of 560 Mbps in a swimming pool with a transmission distance up to 90 m and a total attenuation measured to be 54.64 dB. To the best of our knowledge, this is the first time to demonstrate a high-speed, long-distance UWOC system by employing an SMMP-CAP scheme.

2.
Appl Opt ; 61(1): 41-48, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35200800

RESUMO

In order to reduce turbulence-induced scintillation and deal with alignment problems, a 2×2 multiple-input multiple-output (MIMO) underwater wireless optical communication (UWOC) system is proposed and experimentally demonstrated. With help of the large divergence angle of light beams and large field of view (FOV) of the detectors, the effect of high-density air bubbles is greatly eliminated. Simulation and experimental results confirm that, in most intensity-modulation/direct-detection (IM/DD) MIMO-UWOC systems, the repetition coding (RC) scheme performs better than the space-time block coding (STBC) scheme. In a 50 m swimming pool, the maximum horizontal offset can reach 97.9 cm, which is 421% and 192% higher than that of STBC multiple-input single-output (MISO) and RC-MISO/STBC-MIMO schemes, respectively. With a data rate of 233 Mbps and a transmission distance of 50 m, the large detection range can meet a variety of underwater wireless communication requirements. The experiment indicates that, when the difference in the transmission distance between the two optical signals is higher than 1 m, the bit error rate (BER) of the RC scheme increases sharply, while the BER of the STBC scheme is stable. The MIMO coding scheme needs to be selected according to the actual application environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...