Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1396892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720877

RESUMO

Hydrogel is considered as a promising candidate for wound dressing due to its tissue-like flexibility, good mechanical properties and biocompatibility. However, traditional hydrogel dressings often fail to fulfill satisfied mechanical, antibacterial, and biocompatibility properties simultaneously, due to the insufficient intrinsic bactericidal efficacy and the addition of external antimicrobial agents. In this paper, hydroxyl-contained acrylamide monomers, N-Methylolacrylamide (NMA) and N-[Tris (hydroxymethyl)methyl] acrylamide (THMA), are employed to prepare a series of polyacrylamide hydrogel dressings xNMA-yTHMA, where x and y represent the mass fractions of NMA and THMA in the hydrogels. We have elucidated that the abundance of hydroxyl groups determines the antibacterial effect of the hydrogels. Particularly, hydrogel 35NMA-5THMA exhibits excellent mechanical properties, with high tensile strength of 259 kPa and large tensile strain of 1737%. Furthermore, the hydrogel dressing 35NMA-5THMA demonstrates remarkable inherent antibacterial without exogenous antimicrobial agents owing to the existence of abundant hydroxyl groups. Besides, hydrogel dressing 35NMA-5THMA possesses excellent biocompatibility, in view of marginal cytotoxicity, low hemolysis ratio, and negligible inflammatory response and organ toxicity to mice during treatment. Encouragingly, hydrogel 35NMA-5THMA drastically promote the healing of bacteria-infected wound in mice. This study has revealed the importance of polyhydroxyl in the antibacterial efficiency of hydrogels and provided a simplified strategy to design wound healing dressings with translational potential.

2.
Biosensors (Basel) ; 13(11)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37998165

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease. Due to its complex pathological mechanism, its etiology is not yet clear. As one of the main pathological markers of AD, amyloid-ß (Aß) plays an important role in the development of AD. The deposition of Aß is not only related to the degeneration of neurons, but also can activate a series of pathological events, including the activation of astrocytes and microglia, the breakdown of the blood-brain barrier, and the change in microcirculation, which is the main cause of brain lesions and death in AD patients. Therefore, the development of efficient and reliable Aß-specific probes is crucial for the early diagnosis and treatment of AD. This paper focuses on reviewing the application of small-molecule fluorescent probes in Aß imaging in vivo in recent years. These probes efficiently map the presence of Aß in vivo, providing a pathway for the early diagnosis of AD and providing enlightenment for the design of Aß-specific probes in the future.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Corantes Fluorescentes , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Peptídeos beta-Amiloides , Doença de Alzheimer/diagnóstico por imagem
3.
Biosensors (Basel) ; 13(7)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37504150

RESUMO

Leucine aminopeptidase (LAP) is an important protease that can specifically hydrolyze Leucine residues. LAP occurs in microorganisms, plants, animals, and humans and is involved in a variety of physiological processes in the human body. In the physiological system, abnormal levels of LAP are associated with a variety of diseases and pathological processes, such as cancer and drug-induced liver injury; thus, LAP was chosen as the early biochemical marker for many physiological processes, including cancer. Considering the importance of LAP in physiological and pathological processes, it is critical that high-efficiency and dependable technology be developed to monitor LAP levels. Herein, we summarize the organic small molecule fluorescence/chemiluminescence probes used for LAP detection in recent years, which can image LAP in cancer, drug-induced liver injury (DILI), and bacteria. It can also reveal the role of LAP in tumors and differentiate the serum of cirrhotic, drug-induced liver injury and normal models.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Neoplasias , Animais , Humanos , Corantes Fluorescentes/química , Leucil Aminopeptidase/química , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...