Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2406164, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924614

RESUMO

The quest for artificial light sources that mimic sunlight's spectral characteristics has been a long-standing endeavor, particularly for applications in anticounterfeiting, agriculture, and color hue detection. Conventional sunlight simulators, such as xenon lamps, are often cost-prohibitive and bulky, limiting their adoption. In this regard, the development of a series of single-phase phosphors Ca9LiMg1-xAl2x/3(PO4)7:0.1Eu2+ (x = 0-0.75) with sunlight-like emission described in this work holds immense promise as a compact and economical light source alternative. The phosphors have been obtained by an original heterovalent substitution method and emit a broad spectrum that encompasses the entire visible region, spanning from violet to deep red. Notably, the phosphor with x = 0.5 exhibits an impressive full width at half maximum of 330 nm. A synergistic interplay of experimental investigations and density-functional theory calculations unveils the underlying mechanism behind sunlight-like emission. It is attributed to the local structural perturbations introduced by the heterovalent substitution of Al3+ for Mg2+, leading to a varied distribution of Eu2+ within the lattice. Subsequent characterization of a series of organic dyes combining absorption spectroscopy with convolutional neural network analysis convincingly demonstrates the potential of this phosphor in portable photodetection devices. Broad-spectrum light source testing empowers our model to precisely differentiate dye patterns. This points to the phosphor being ideal for mimicking sunlight. And beyond this demonstrated application, we envision the phosphor's utility in other relevant domains, including visible light communication and smart agriculture. These findings not only enrich our understanding of luminescent materials design but also pave the way for advancements in various application areas. This article is protected by copyright. All rights reserved.

2.
ACS Appl Mater Interfaces ; 16(11): 13773-13785, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38442348

RESUMO

Conventional ocean wave observation instruments are powered by batteries, limiting the continuous observation time. Besides, the waste of batteries brings environmental contaminations. Triboelectric nanogenerators (TENGs) can reveal ocean wave information through their electrical output, taking the triboelectric charge as the information carrier. However, charge amplification is necessary, consuming additional energy. Herein, taking the photons rather than electrons as the information carrier, we developed a fully self-powered natural light-enabled sensing system for ocean wave monitoring by coupling two rotary-freestanding sliding TENGs (RFS-TENGs) and a polymer network liquid crystal (PNLC)-triggered optical system. The natural light is modulated by the PNLC driven by ocean wave-induced friction. With the assistance of a one-way bearing, the rise and fall of the wave will trigger different RFS-TENGs to power the PNLC in different voltage drops, leading to different transmitted natural light intensities. The wave height information can be obtained through the number of pulse signals with the same trough light intensity, while the wave period can be obtained through the duration between the same two sets of pulse signals. The effectiveness of the developed sensing paradigm in practical applications was verified by flume-based experiments, with the highest accuracies of 90.7% in wave height and 99.8% in wave period.

3.
Micromachines (Basel) ; 14(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37763963

RESUMO

Hafnium oxide thin films have attracted great attention as promising materials for applications in the field of optical thin films and microelectronic devices. In this paper, hafnium oxide thin films were prepared via DC magnetron sputtering deposition on a quartz substrate. The influence of various negative biases on the structure, morphology, and mechanical and optical properties of the obtained films were also evaluated. XRD results indicated that (1¯11)-oriented thin films with a monoclinic phase could be obtained under the non-bias applied conditions. Increasing the negative bias could refine the grain size and inhibit the grain preferred orientation of the thin films. Moreover, the surface quality and mechanical and optical properties of the films could be improved significantly along with the increase in the negative bias and then deteriorated as the negative bias voltage arrived at -50 V. It is evident that the negative bias is an effective modulation means to modify the microstructural, mechanical, and optical properties of the films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...