Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38785779

RESUMO

Crassostrea hongkongensis is an economically important bivalve found in various parts of the South China Sea. A new interspecific backcross ([(Crassostrea hongkongensis ♀ × C. gigas ♂) ♂ × C. hongkongensis ♀]) variety was bred by the South China Sea Institute of Oceanology which named "South China No. 1". This study aims to explore the effects of stocking density on the growth performance of "South China No. 1", compared their growth performance and genetic diversity to C. hongkongensis, and found the best place breeding site for "South China No. 1" in Beibu Gulf. The results showed that stocking a density of 20 oysters/substrate can significantly increase the shell height, shell width, total weight, survival rate, daily shell height gain and daily body mass gain. It was found that the shell height and total weight of "South China No. 1" cultured in Fangchenggang were significantly higher than that of those in Beihai and Qinzhou from September 2018 to November 2018. Similarly, the shell width of oysters in Fangchenggang and Qinzhou was also significantly higher in September 2018, and the interaction between site and stocking density had significant effects on the shell width in March 2018 and November 2018. In addition, the shell height and shell width of "South China No. 1" were significantly higher than that of C. hongkongensis in all three sites. At all three sites, the phytoplankton community structure was mostly dominated by Bacillariophyta. In the Hardy-Weinberg equilibrium test, for the seven populations and ten microsatellites, in 10 of the 70 groups, the segregation distortion was significant. These results suggest that a stocking density of 20 oysters/substrate can promote the shell height, shell width and total weight of "South China No. 1" in Beibu Gulf, China. "South China No. 1" has better growth performance compared with C. hongkongensis. Fangchenggang is a suitable place to cultivate the "South China No. 1" breed according to the total weight and sum of all algal genus abundances. The results of this study can be used as a reference to further understand the stocking density and genetic diversity of the "South China No. 1" breed in Beibu Gulf, China.

2.
Sci Total Environ ; 928: 172474, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621527

RESUMO

Marine heatwaves (MHWs) have a significant impact on intertidal bivalves and the ecosystems they sustain, causing the destruction of organisms' original habitats. Saccostrea mordax mainly inhabits the intertidal zone around the equator, exhibiting potential tolerance to high temperatures and maybe a species suitable for habitat restoration. However, an understanding about the tolerance mechanism of S. mordax to high temperatures is unclear. It is also unknown the extent to which S. mordax can tolerate repeated heatwaves of increasing intensity and frequency. Here, we simulated the effects of two scenarios of MHWs and measured the physiological and biochemical responses and gene expression spectrum of S. mordax. The predicted responses varied greatly across heatwaves, and no heatwave had a significant impact on the survival of S. mordax. Specifically, there were no statistically significant changes apparent in the standard metabolic rate and the activities of enzymes of the oyster during repeated heatwaves. S. mordax exposed to high-intensity heatwaves enhanced their standard metabolic rate to fuel essential physiological maintenance and increasing activity of SOD and expression of HSP70/90. These strategies are presumably at the expense of functions related to immunity and growth, as best exemplified by significant depressions in activities of enzymes (NaK, CaMg, T-ATP, and AKP) and expression levels of genes (Rab, eEF-2, HMGR, Rac1, SGK, Rab8, etc.). The performance status of S. mordax tends to improve by implementing a suite of less energy-costly compensatory mechanisms at various levels of biological organization when re-exposed to heatwaves. The adaptive abilities shown by S. mordax indicate that they can play a crucial role in the restoration of oyster reefs in tropical seas.


Assuntos
Ostreidae , Animais , Ostreidae/fisiologia , Recifes de Corais , Calor Extremo , Ecossistema , Temperatura Alta , Termotolerância
3.
Plant Physiol Biochem ; 206: 108245, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38064903

RESUMO

Effective colonization on plant roots is a prerequisite for plant growth promoting rhizobacterias (PGPR) to exert beneficial activities. Light is essential for plant growth, development and stress response. However, how light modulates root colonization of PGPR remains unclear. Here, we found that high red/far red (R/FR) light promoted and low R/FR light inhibited the colonization and growth enhancement of Serratia plymuthica A21-4 (S. plymuthica A21-4) on tomato, respectively. Non-targeted metabolomic analysis of root exudates collected from different R/FR ratio treated tomato seedlings with or without S. plymuthica A21-4 inoculation by UPLC-MS/MS showed that 64 primary metabolites in high R/FR light-grown plants significantly increased compared with those determined for low R/FR light-grown plants. Among them, 7 amino acids, 1 organic acid and 1 sugar obviously induced the chemotaxis and biofilm formation of S. plymuthica A21-4 compared to the control. Furthermore, exogenous addition of five artificial root exudate compontents (leucine, methionine, glutamine, 6-aminocaproic acid and melezitose) regained and further increased the colonization ability and growth promoting ability of S. plymuthica A21-4 on tomato under low R/FR light and high R/FR light, respectively, indicating their involvement in high R/FR light-regulated the interaction of tomato root and S. plymuthica A21-4. Taken together, our results, for the first time, clearly demonstrate that high R/FR light-induced root exudates play a key role in chemotaxis, biofilm formation and root colonization of S. plymuthica A21-4. This study can help promote the combined application of light supplementation and PGPR to facilitate crop growth and health in green agricultural production.


Assuntos
Raízes de Plantas , Serratia , Solanum lycopersicum , Raízes de Plantas/metabolismo , Quimiotaxia/fisiologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Exsudatos e Transudatos , Biofilmes
4.
Front Immunol ; 14: 1267772, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37868973

RESUMO

Background: Apoptosis regulates normal development, homeostasis, immune tolerance and response to environmental stress by eliminating unwanted or diseased cells, and plays a key role in non-specific immunity of invertebrates. The exogenous pathway mediated by death receptors and death ligands is a very important pathway for cell apoptosis. Death ligands are mainly members of the tumour necrosis factor (TNF) family, of which FasL is an important member. The deep involvement of FasL in vertebrates cell apoptosis and immunity has been reported many times, but there is limited research on the FasL gene in shellfish, and its functional importance in oyster cell apoptosis and immunity remains unclear. Methods: The full length of ChFasL was identified and cloned based on the genome of Crassostrea hongkongensis. Quantitative PCR was used to detect the relative expression of ChFasL in different developmental stages and tissues, as well as the changes of relative expression in hemocytes after bacterial infection. The expression position of ChFasL in HEK293T cells was also located by subcellular localization, and the effect of increased recombinant protein content on the activity of reporter genes p53 and p21 was studied by dual-fluorescence reporter gene. Finally, the changes of apoptosis rate in hemocytes after ChFasL silencing was identified by RNA interference technology. Results: We identified a novel FasL gene from C. hongkongensis and named it ChFasL. We found that ChFasL has potential N-linked glycosylation site, a transmembrane domain and a TNF region, which was a typical characteristics of TNF family. ChFasL was expressed in all developmental stages of larvae and in all tissues of oysters. After stimulation by V. alginolyticus or S. haemolyticus, its relative expression in hemocytes increased significantly, suggesting that ChFasL was deeply engaged in the immune response process of C. hongkongensis to external microbial stimulation. The results of subcellular localization showed that ChFasL was mainly distributed in the cytoplasm of HEK293T cells. With the overexpression of the recombinant protein pcDNA3 1- ChFasL, the activity of p53 and p21 significantly increased, showing a positive regulatory effect. Moreover, after dsRNA successfully reduced the relative expression of ChFasL, the apoptosis rate of hemocytes was significantly lower than that the dsGFP group. Conclusion: These results comprehensively confirmed the important role of ChFasL in the apoptosis process of C. hongkongensis, which provided the basis and premise for the in-depth understanding of the immune function of apoptosis in molluscs, and also contributed to the research on the pathogenic death mechanism and disease resistance breeding of marine bivalves.


Assuntos
Crassostrea , Humanos , Animais , Sequência de Bases , Sequência de Aminoácidos , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Crassostrea/metabolismo , Proteína Supressora de Tumor p53/genética , Células HEK293 , Clonagem Molecular , Fatores de Necrose Tumoral/metabolismo , Proteínas Recombinantes/genética , Apoptose/genética
5.
J Biomed Mater Res B Appl Biomater ; 111(10): 1824-1839, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37255008

RESUMO

Although yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) ceramics have been widely used as restorative materials due to their high mechanical strength, unique esthetic effect, and good biocompatibility, their general application to implant materials is still limited by their biological inertness and hydrothermal aging phenomenon. Existing studies have attempted to investigate how to enhance the bioactivity or hydrothermal aging resistance of Y-TZP. Still, more studies need to be done on the modification that combines these two aspects. In this study, Y-TZP was prepared by 77S bioactive glass (BG) sol and akermanite (AKT) sol infiltration and microwave sintering, which provided Y-TZP with high bioactivity while maintaining resistance to hydrothermal aging. Results of phase composition evaluation, microstructural characteristics, and mechanical property tests showed that modified Y-TZP specimens exhibited little or no tetragonal-to-monoclinic (t → m) transformation and maintained relatively high mechanical properties after accelerated hydrothermal aging treatment. The in vitro biological behaviors showed that the introduction of 77S BG and AKT significantly promoted cell adhesion, spreading, viability, and proliferation on the surface of modified Y-TZP ceramics. Therefore, this modification could effectively enhance the bioactivity and hydrothermal aging resistance of Y-TZP ceramics for its application in dental implant materials.


Assuntos
Implantes Dentários , Proteínas Proto-Oncogênicas c-akt , Teste de Materiais , Propriedades de Superfície , Zircônio/farmacologia , Zircônio/química , Ítrio/química , Cerâmica/farmacologia , Cerâmica/química , Materiais Dentários
6.
Environ Pollut ; 316(Pt 1): 120521, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309299

RESUMO

Soil salinity severely limits crop yield and quality. Grafting onto tolerant rootstocks is known as an effective means to alleviate salt stress. The present study was planned to find out the potential roles, mechanisms and applications of luffa rootstock to improve salt tolerance of grafted cucumber plants. Here, we screened a highly salt-tolerant luffa rootstock by evaluating the growth, photosynthetic performance, antioxidant defense and the accumulation of Na+ and K+ under salt stress. Reciprocal grafting between cucumber and luffa showed that luffa rootstock significantly improved the salt tolerance of cucumber plants, as evidenced by higher fresh weight, photochemical efficiency (Fv/Fm), and lower relative electrical conductivity (REC), which was closely associated with the decreased accumulation of Na+ and increased the accumulation of K+ in shoots of luffa grafted cucumber seedlings, leading to a lower Na+:K+ ratio in shoot when compared with self-grafted cucumber. Furthermore, grafting with intermediate stock of luffa also sufficiently alleviated cucumber salt stress by reducing Na+ accumulation in shoot and the whole plant but increasing Na+ accumulation in interstock and root under salt stress, fully proving the salt tolerance depending on the capacity of luffa interstock to limit the transport of Na+ from the root to the shoot. More importantly, luffa rootstock improved the growth, yield and quality of grafted cucumber plants grown in pots in solar greenhouse as revealed by increased net photosynthetic rate, plant height, leaf number, yield, Vitamin C and soluble sugar but decreased titratable acid under both salinity and normal conditions. Together, these results, for the first time, clearly demonstrated that luffa,a new highly salt-tolerant rootstock, enhances salt tolerance and improves yield and quality of grafted cucumber plants by reducing sodium transport to the shoot.


Assuntos
Cucumis sativus , Luffa , Raízes de Plantas , Tolerância ao Sal , Sódio , Brotos de Planta
7.
Food Chem ; 398: 133868, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35961171

RESUMO

Gametogenesis can significantly affect the biochemical composition of oysters, but little research on the difference between sexes. Therefore, we conducted the first in-depth study on the composition differences between males and females of three different Crassostrea sp.. The results showed that females had higher glycogen, lipid, Cu and Zn contents than males, while males had higher protein and taurine contents than females at maturity, which might be related to special meiosis pattern of eggs and less energy was required for female gametogenesis. In addition, both males and females had well-balanced essential amino acid compositions. The omega-3: omega-6 (n-3: n-6) ratio of males was significantly higher than that of females, indicating that the nutritional quality of males was higher. These results provide a reliable and refined theoretical and research basis for revealing the nutritional quality, extracting beneficial ingredients, and developing functional food of Crassostrea sp., and provide data support for the sex-regulated breeding of oysters.


Assuntos
Crassostrea , Poluentes Químicos da Água , Animais , Crassostrea/genética , Crassostrea/metabolismo , Feminino , Glicogênio/metabolismo , Masculino , Metais/metabolismo , Valor Nutritivo , Poluentes Químicos da Água/análise
8.
J Hazard Mater ; 429: 128412, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35236029

RESUMO

Cadmium (Cd) is highly toxic to both plants and humans.Light plays crucial roles in plant growth, development and stress responses, but how light functions in plant Cd response remain unclear.Here,we found that Cd treatment significantly induced the expression of PHYB but not PHYA and CRY1 in leaves and roots of cucumber. Correspondingly,compared with white light (W) during Cd stress,red light(R) increased Cd sensitivity,whereas blue light (B) enhanced Cd tolerance as evidenced by decreased Cd-induced chlorosis, growth inhibition, photosynthesis inhibition and chloroplast ultrastructure damage.Furthermore,B markedly increased the transcripts and activities of the antioxidant enzymes including ascorbate peroxidase (APX),catalase (CAT),superoxide dismutase (SOD) and glutathione reductase (GR),as well as glutathione (GSH) content and GSH1 expression, resulting in hydrogen peroxide (H2O2) and superoxide (O2.-) reduction,but R treatment showed the opposite trend. Moreover, R and B markedly up-regulated and down-regulated the expression levels of Cd uptake and transport genes including IRT1, NRAMP1 and HMA3, leading to more and less Cd accumulation than the W-treated plants in both shoots and roots, respectively under Cd stress. Collectively, our data clearly demonstrate that R and B function antagonistically to regulate Cd tolerance in cucumber via modulating the photosynthesis, antioxidant defense system and Cd uptake, providing a novel light quality control strategy to enhance crop Cd tolerance and food safety.


Assuntos
Antioxidantes , Cucumis sativus , Antioxidantes/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Cucumis sativus/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Superóxido Dismutase/metabolismo
9.
Dev Comp Immunol ; 128: 104321, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34798199

RESUMO

MDM2 (mouse double-minute) and p53 form a negative feedback loop and play a prominent role in preventing the induction of uncontrolled apoptosis. To better understand their potential roles in oyster Crassostrea hongkongensis, MDM2 and p53 homologs were first isolated and cloned in C. hongkongensis (named ChMDM2 and Chp53), and their mRNA expression patterns in tissues and developmental stages were analyzed. Multiple sequence alignment analysis and phylogenetic analysis of ChMDM2 and Chp53 displayed a high degree of homology and conservation. In addition, exposure to Vibrio coralliilyticus resulted in DNA damage and apoptosis in the hemocytes of C. hongkongensis, and found that the mRNA expression level of ChMDM2 was decreased, while the relative expression of Chp53 was significantly increased in the hemocytes and gills. Furthermore, fluorescence from ChMDM2-EGFP and Chp53-Red were found to be distributed in the nucleus of HEK293T cells. Besides, dual-luciferase reporter assays showed that ChMDM2 antagonized with Chp53 and participates in p53 signaling pathway. In addition, the interaction between ChMDM2 and Chp53 was confirmed strongly by Co-immunoprecipitation assays. Furthermore, the results of RNAi showed that ChMDM2 and Chp53 participated in apoptosis which induced infection of V. coralliilyticus. Taken together, our results characterized the features of ChMDM2 and Chp53, which played a critical role in apoptosis of C. hongkongensis.


Assuntos
Crassostrea , Proteína Supressora de Tumor p53 , Animais , Células HEK293 , Hemócitos , Humanos , Imunidade , Imunidade Inata/genética , Camundongos , Filogenia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Mitochondrial DNA B Resour ; 6(9): 2459-2460, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368446

RESUMO

In this study, the complete mitochondrial genome of Hippopus porcellanus was reported. The whole mitochondrial genome was 21,565bp in length with a typical mitochondrial genomic structure including 13 protein-coding genes, 23 transfer RNA genes, 2 ribosomal RNA genes and 1 control region (D-loop). Mitogenome base composition was biased toward A + T content, at 60.3%. A phylogenetic tree based on complete mitogenome sequences revealed that, H. porcellanus is closely related to H. hippopus, both of which belong to the genus Hippopus.

11.
Food Chem ; 356: 129736, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831823

RESUMO

Variations in the biochemical composition and nutritional quality with annual changes in gonad development were investigated to identify the optimal harvesting time of C. hongkongensis. The glycogen levels in the mantle, muscle, and gonad-visceral mass were significantly lower in June than in December, associated with changes in the expressions of ChGS and ChGP. Protein content consistently exceeded 52% of dry weight. The only significant change in protein levels was an increase between April and June in the gonad-visceral mass, which was associated with the gonadal transition from proliferation to maturation. Moreover, C. hongkongensis consistently had a well-balanced essential amino acid profile, meeting the essential amino acid requirements of preschool children. The lipid content and fatty acid composition of C. hongkongensis varied with the reproductive cycle, but the omega-3:omega-6 ratio was consistently higher than those of C. gigas and C. virginica. In summary, the optimal harvest time of C. hongkongensis was during the inactive stage of most gonads (from August to February at Beihai).


Assuntos
Crassostrea/metabolismo , Valor Nutritivo , Estações do Ano , Animais , Crassostrea/fisiologia , Ácidos Graxos/metabolismo , Glicogênio/metabolismo , Gônadas/metabolismo , Proteínas/metabolismo , Reprodução
12.
Mar Life Sci Technol ; 3(4): 463-473, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37073264

RESUMO

The production of an all-triploid population by mating tetraploid males with diploid females is the best and most fundamental method for the large-scale production of triploid oysters. Obtaining a stable tetraploid population is essential for guaranteed production in industrialized triploid cultivation. C. hongkongensis and C. sikamea are important oyster breeding species in southern China, and have great economic value. However, there are not any published data on inducing tetraploid C. hongkongensis or C. sikamea. Therefore, we investigated tetraploid induction in these two oyster species by inhibiting the PB1 release in diploid fertilized eggs using Cytochalasin B (CB) under 31 °C, 15 ‰ salinity. The results confirmed that the optimal tetraploid induction conditions for C. hongkongensis were a CB concentration of 0.50 mg/L with induction starting at 9.0 min after fertilization, and stopping at 21.0 min after fertilization; the induction efficiency index reached 0.123 under these conditions. The optimal tetraploid induction conditions for C. sikamea were a CB concentration of 0.50 mg/L, with induction starting at 7.5 min after fertilization and stopping at 18 min after fertilization; the induction efficiency index could be as high as 0.281 under these conditions. However, we confirmed that the tetraploid rate decreased with larval growth, and no tetraploids were detected in the juvenile period of either C. hongkongensis or C. sikamea. This may be attributed to the very low survival of the tetraploid larvae induced by this method, especially as most tetraploid larvae died during the first three days. In summary, it is simple to directly induce tetraploid C. hongkongensis and C. sikamea larvae by inhibiting the PB1 release of diploid zygotes, but the low survival rate makes it challenging to obtain viable juvenile tetraploids.

13.
Mitochondrial DNA B Resour ; 5(3): 3614-3615, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33367031

RESUMO

In this study, we present the first complete mitochondrial genome sequence of the giant clam Tridacna gigas. The total length of the mitogenome is 19,558 bp. It contains the typical mitochondrial genomic structure, including 13 protein-coding genes, 23 transfer RNA genes, two ribosomal RNA genes, and one control region (D-loop). Mitogenome base composition is biased toward A + T content, at 57.6%. A phylogenetic tree based on complete mitogenome sequences revealed that, within the genus Tridacna, T. gigas is closely related to T. derasa.

14.
Wei Sheng Yan Jiu ; 49(4): 603-612, 2020 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-32928352

RESUMO

OBJECTIVE: A method based on isotope internal standard dilution was established for the determination of four polycyclic aromatic hydrocarbons(PAH4) including chrysene, benzo [a] anthracene, benzo [b] fluoranthene and benzo [a] pyrene in spicy strips sold in the markets. METHODS: The hot strips were homogenized and the target compounds were extracted with n-hexane, concentrated in vacuum, saponified and purified by solid phase extraction column, then the pretreated samples were separated by DB-EUPAH column(20 m×0. 18 mm, 0. 14 µm), detected by gas chromatography-mass spectrometry(GC-MS)and quantified by internal standard of isotope. RESULTS: The recoveries of PAH4 in different concentration levels of hot noodles were 91. 0%-103. 5%, and the relative standard deviation(RSD)was 1. 89%-6. 73%(n=6). The detection limit was 0. 30 µg/kg and the quantitative limit was 1. 0 µg/kg. The content of PAH4(sum) in 27 collected samples ranged from 1. 35 µg/kg to 11. 44 µg/kg, and the detection rate was 100%. CONCLUSION: With less solvent consumption, good purification effect and blank control, the method is simple, rapid and accurate and meets the detecting requirements of PAH4 in hot strips.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Cromatografia Gasosa-Espectrometria de Massas , Isótopos , Espectrometria de Massas , Vácuo
15.
Fish Shellfish Immunol ; 98: 122-129, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31917320

RESUMO

Caspase 3 plays an important role in apoptotic pathways and contributes to maintaining the homeostasis of the immune system in organisms. The structure, functions, and characteristics of caspase 3 have been extensively investigated in many species, but the research is scarce when it comes to bivalves, particularly oysters. In this study, we identified and cloned a previously unknown caspase 3 gene, named ChCas 3, in C. hongkongensis. The full-length cDNA of ChCas 3 was 1562 bp and included a 175 bp 5'-untranslated region (UTR), a 141 bp 3'-UTR and a 1245 bp open reading frame (ORF) that encoded a polypeptide of 415 amino acids. Similar to caspase 3 in other species, ChCas 3 has a pro-domain, a conserved cysteine active site, a large p20 subunit and a small p10 subunit. Our findings demonstrated the expression of ChCas 3 in all the eight tissues via tissue-specific expression assays with the highest expression in haemocytes. ChCas 3 was confirmed to be expressed throughout the larval development stages, and fluorescence from pEGFP-N1-ChCas 3 was found to be distributed throughout the entire HEK293T cell. In addition, the relative expression of ChCas 3 significantly enhanced in hemocytes post bacterial stimulation, and overexpression of ChCas 3 led to upregulation of the transcriptional activity of NF-κB and p53 reporter genes in HEK293T cells, which indicated that it was involved in innate immune responses. Finally, the apoptosis rate of the haemocytes declined considerably compared with that of the control group after the expression of ChCas 3 was successfully silenced by dsRNA, corroborating its sentinel role in apoptosis. This study provides comprehensive underpinning evidences, affirming caspase 3 crucial role against bacterial infection and apoptosis in C. hongkongensis.


Assuntos
Apoptose/genética , Caspase 3/genética , Caspase 3/imunologia , Crassostrea/genética , Crassostrea/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Animais , Células HEK293 , Hemócitos/metabolismo , Humanos
16.
Front Physiol ; 10: 524, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156447

RESUMO

The Kumamoto oyster, Crassostrea sikamea, is native to Southeast Asia, including China, Japan and Korea, and is an important traditional wild fishery resource. Although this oyster's early gametogenesis was reported in Mexico, no related research was found on the breeding potential using early forming gametes. We re-examined the gametogenesis of C. sikamea during early life history in southern China and further divided it into three phases: sex differentiation (1 month old, shell height 2-3 mm), physiological maturity (2 months old, shell height 3-5 mm) and functional maturity (3 months old, shell height 9-12 mm). The breeding potential was evaluated using four sets of gametes from parent oysters of different ages (2, 3, 6, and 15 months old). The physiologically mature gametes were not suitable for artificial hatchery due to the low production of eggs, and yielding a high deformity rate of D larvae (95.47 ± 1.25%) and heavy larval morality (90.23 ± 1.84%) post-fertilization. However, progeny from functionally mature gametes grew significantly faster than those of other age groups, with no significant differences in fertilization, hatching level or survival of progeny among them. This study clearly demonstrates that the first batch of functionally mature gametes can develop normally and produce viable progeny, suggesting that artificial hatchery of C. sikamea is completely feasible using parent oysters from 3 months old and onward. Furthermore, this hatchery method can effectively shorten the breeding cycle and accelerate the breeding process.

17.
Biosci Biotechnol Biochem ; 83(4): 653-658, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30558506

RESUMO

Doxorubicin (Dox) is an anthracycline antibiotic that has been used to treat different cancers. Dox-induced cardiotoxicity is common in clinical practice, while its mechanism is unknown. It has been proved that lncRNA FOXC2-AS1 may promote doxorubicin resistance and WNT1-inducible signaling pathway protein-1 (WISP1) blocks doxorubicin-induced cardiomyocyte death. Our study aimed to investigate the involvement of lncRNA FOXC2-AS1 and WISP1 in doxorubicin-induced cardiotoxicity and to explore their interactions. In our study we observed that FOXC2-AS1 and WISP1 mRNA were downregulated in heart tissues of mice with Dox-induced cardiotoxicity. FOXC2-AS1 and WISP1 mRNA expression were positively correlated in mice with Dox-induced cardiotoxicity but not in healthy mice. Overexpression of FOXC2-AS1 promoted to viability of mice cardiomyocytes under Dox treatment and also increased the expression level of WISP1. In contrast, WISP1 overexpression showed no significant effect on FOXC2-AS1. We therefore conclude that lncRNA FOXC2-AS1 may upregulate WISP1 to protect cardiomyocytes from doxorubicin-induced cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Proteínas de Sinalização Intercelular CCN/genética , Cardiotoxicidade/genética , Doxorrubicina/toxicidade , Fatores de Transcrição Forkhead/genética , Proteínas Proto-Oncogênicas/genética , RNA Longo não Codificante/genética , Animais , Pressão Sanguínea , Proteínas de Sinalização Intercelular CCN/metabolismo , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/fisiopatologia , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Coração/efeitos dos fármacos , Coração/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Transfecção
18.
Front Physiol ; 9: 1674, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534082

RESUMO

This study is the first systematic comparison of the biochemical composition and nutritional quality between diploid and triploid Hong Kong oysters, Crassostrea hongkongensis. Results showed that in the reproductive season, the glycogen content in five tissues (gill, mantle, adductor muscle, labial palps and gonad) was significantly higher (P < 0.05) in triploids than in diploids, with odds ratios (ORs) of 96.26, 60.17, 72.59, 53.56, and 128.52%, respectively. In the non-reproductive phase, significant differences in glycogen content (P < 0.05) between diploid and triploid oysters existed only in gill and gonad. In both diploid and triploid Hong Kong oysters, quantitative real-time PCR analysis of the glycogen synthesis gene (ChGS) and glycogen phosphorylase gene (ChGP) showed that the gene expression patterns matched the pattern of variation in glycogen content. Moreover, in both the reproductive and the non-reproductive phases, triploid Hong Kong oysters had a well balance of essential amino acids and were thus a well source of high-quality protein. Surprisingly, in both phases, significantly higher (P < 0.05) percentages of four essential fatty acids (α-linolenic acid, linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid) were observed in triploids than in diploids. Additionally, the ratio of n-3/n-6 polyunsaturated fatty acids (PUFAs) was much higher in triploids than that in diploids. Variations in Biochemical composition were consistent with the relative expression of the citrate synthase gene (ChCS) and the α-ketoglutarate dehydrogenase gene (ChKD), which are key enzyme genes of the tricarboxylic acid cycle. Overall, the triploid Hong Kong oyster has a better nutritional value and taste than the diploid in terms of glycogen content, protein quality and fatty acid content.

19.
Fish Shellfish Immunol ; 71: 151-159, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29017949

RESUMO

Tumor necrosis factor receptor-associated factor 3 (TRAF3) is a multifunctional adaptor protein in innate and acquired immune system that plays a key role in the regulation of the RIG-I-like receptor (RLR) and Toll-like receptor (TLR) signaling pathway in mammals. However, the immune function of TRAF3 homologs in freshwater mollusks is not well understood. In this study, we identified a bivalve TRAF3 gene (AwTRAF3) from Anodonta woodiana and investigated its potential roles during immune challenges. The present AwTRAF3 encoded a polypeptide of 562 amino acids with predicted molecular mass of 64.5 kDa and PI of 7.9. Similar to other reported TRAF3s, AwTRAF3 contained a RING finger domain, two TRAF domains with zinc finger domains, a coiled coli region and a conserved C-terminal meprin and TRAF homology (MATH) domain. Quantitative real-time PCR (qRT-PCR) analysis revealed that AwTRAF3 mRNA was broadly expressed in all of the examined tissues, with high expression in hepatopancreas, gill and heart. In addition, immune challenge experiments directly showed that transcript levels of AwTRAF3 in hepatopancreas were significantly regulated upon bacterial (Vibrio alginolyticus and Staphylococcus aureus) and viral (poly (I:C)) challenges, respectively. Moreover, GFP-tagged AwTRAF3 fusion protein was found to be located primarily in the cytoplasm in HEK293T cells. Altogether, these data provided the first experimental demonstration that freshwater mollusks possess a functional TRAF3 that was involved in the innate defense against bacterial and viral infection.


Assuntos
Anodonta/genética , Anodonta/imunologia , Imunidade Inata/genética , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/imunologia , Animais , Células HEK293 , Humanos , Poli I-C/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Staphylococcus aureus/fisiologia , Vibrio alginolyticus/fisiologia
20.
Fish Shellfish Immunol ; 71: 105-115, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28986217

RESUMO

Tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) is a member of the TRAF superfamily that acted as a key signal transduction protein and has been implicated in inflammatory and apoptosis processes in mammals. However, identification of TRAF2s in invertebrates is very limited and its function, in particular that under immune challenges, is still unknown. In this report, a molluscan TRAF2 gene (referred to as AwTRAF2) was cloned and characterized from the freshwater bivalve, Anodonta woodiana. The open reading frame (ORF) of AwTRAF2 was 1683 bp in length, which encoded a putative 560 amino acid-protein. The deduced AwTRAF2 sequence shared similar structural characteristics and close evolutionary relationship with mollusk TRAF2s. The tissue-specific expression analysis revealed that AwTRAF2 mRNA was broadly expressed in all tested tissues, with high expression in gill and hepatopancreas. In addition, in vivo injection experiments directly showed that AwTRAF2 mRNA levels in hepatopancreas were significantly up-regulated in response to bacterial pathogen (Vibrio alginolyticus and Staphylococcus aureus) and PAMPs (Lipopolysaccharides and Peptidoglycan) challenges. Moreover, fluorescence microscopy observations revealed that AwTRAF2 was mainly located in cytoplasm of HEK293T cells and its overexpression significantly increased the transcriptional activities of the NF-κB-Luc reporter gene in HEK293T cells. Taken together, this study provided the experimental evidence of the presence of a functional TRAF2 in freshwater bivalves, which revealed its involvement in host response to immune challenges in A. woodiana.


Assuntos
Anodonta/genética , Anodonta/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Moléculas com Motivos Associados a Patógenos/farmacologia , Filogenia , Alinhamento de Sequência , Staphylococcus aureus/fisiologia , Fator 2 Associado a Receptor de TNF/química , Vibrio alginolyticus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...