Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 17(5): 056040, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33124600

RESUMO

OBJECTIVE: This study employs a human head model with real skull to demonstrate the feasibility of transcranial acoustoelectric brain imaging (tABI) as a new modality for electrical mapping of deep dipole sources during treatment of epilepsy with much better resolution and accuracy than conventional mapping methods. APPROACH: This technique exploits an interaction between a focused ultrasound (US) beam and tissue resistivity to localize current source densities as deep as 63 mm at high spatial resolution (1 to 4 mm) and resolve fast time-varying currents with sub-ms precision. MAIN RESULTS: Detection thresholds through a thick segment of the human skull at biologically safe US intensities was below 0.5 mA and within range of strong currents generated by the human brain. SIGNIFICANCE: This work suggests that 4D tABI may emerge as a revolutionary modality for real-time high-resolution mapping of neuronal currents for the purpose of monitoring, staging, and guiding treatment of epilepsy and other brain disorders characterized by abnormal rhythms.


Assuntos
Epilepsia , Crânio , Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Epilepsia/terapia , Cabeça/diagnóstico por imagem , Humanos , Imagens de Fantasmas
2.
Artigo em Inglês | MEDLINE | ID: mdl-28692972

RESUMO

The acoustoelectric (AE) effect is a basic physical phenomenon, which underlies the changes made in the conductivity of a medium by the application of focused ultrasound. Recently, based on the AE effect, several biomedical imaging techniques have been widely studied, such as ultrasound-modulated electrical impedance tomography and ultrasound current source density imaging. To further investigate the mechanism of the AE effect in tissue and to provide guidance for such techniques, we have modeled the tissue AE effect using the theory of solid mechanics. Both bulk compression and thermal expansion of tissue are considered and discussed. Computation simulation shows that the muscle AE effect result, conductivity change rate, is 3.26×10-3 with 4.3-MPa peak pressure, satisfying the theoretical value. Bulk compression plays the main role for muscle AE effect, while thermal expansion makes almost no contribution to it. In addition, the AE signals of porcine muscle are measured at different focal positions. With the same magnitude order and the same change trend, the experiment result confirms that the simulation result is effective. Both simulation and experimental results validate that tissue AE effect modeling using solid mechanics theory is feasible, which is of significance for the further development of related biomedical imaging techniques.


Assuntos
Acústica , Impedância Elétrica , Modelos Biológicos , Animais , Simulação por Computador , Processamento de Imagem Assistida por Computador , Fenômenos Mecânicos , Músculo Esquelético/fisiologia , Reprodutibilidade dos Testes , Suínos , Tomografia
3.
IEEE Trans Biomed Eng ; 62(1): 241-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25122512

RESUMO

Ultrasound current source density imaging (UCSDI), based on the acoustoelectric (AE) effect, is a noninvasive method for mapping electrical current in 4-D (space + time). This technique potentially overcomes limitations with conventional electrical mapping procedures typically used during treatment of sustained arrhythmias. However, the weak AE signal associated with the electrocardiogram is a major challenge for advancing this technology. In this study, we examined the effects of the electrode configuration and ultrasound frequency on the magnitude of the AE signal and quality of UCSDI using a rabbit Langendorff heart preparation. The AE signal was much stronger at 0.5 MHz (2.99 µV/MPa) than 1.0 MHz (0.42 µV/MPa). Also, a clinical lasso catheter placed on the epicardium exhibited excellent sensitivity without penetrating the tissue. We also present, for the first time, 3-D cardiac activation maps of the live rabbit heart using only one pair of recording electrodes. Activation maps were used to calculate the cardiac conduction velocity for atrial (1.31 m/s) and apical (0.67 m/s) pacing. This study demonstrated that UCSDI is potentially capable of real-time 3-D cardiac activation wave mapping, which would greatly facilitate ablation procedures for treatment of arrhythmias.


Assuntos
Potenciais de Ação/fisiologia , Cateterismo Cardíaco/métodos , Sistema de Condução Cardíaco/fisiologia , Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Algoritmos , Animais , Sistema de Condução Cardíaco/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Técnicas In Vitro , Condução Nervosa/fisiologia , Coelhos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
J Heart Lung Transplant ; 33(4): 438-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24560982

RESUMO

BACKGROUND: Varying strategies are currently being evaluated to develop tissue-engineered constructs for the treatment of ischemic heart disease. This study examines an angiogenic and biodegradable cardiac construct seeded with neonatal cardiomyocytes for the treatment of chronic heart failure (CHF). METHODS: We evaluated a neonatal cardiomyocyte (NCM)-seeded 3-dimensional fibroblast construct (3DFC) in vitro for the presence of functional gap junctions and the potential of the NCM-3DFC to restore left ventricular (LV) function in an in vivo rat model of CHF at 3 weeks after permanent left coronary artery ligation. RESULTS: The NCM-3DFC demonstrated extensive cell-to-cell connectivity after dye injection. At 5 days in culture, the patch contracted spontaneously in a rhythmic and directional fashion at 43 ± 3 beats/min, with a mean displacement of 1.3 ± 0.3 mm and contraction velocity of 0.8 ± 0.2 mm/sec. The seeded patch could be electrically paced at nearly physiologic rates (270 ± 30 beats/min) while maintaining coordinated, directional contractions. Three weeks after implantation, the NCM-3DFC improved LV function by increasing (p < 0.05) ejection fraction 26%, cardiac index 33%, dP/dt(+) 25%, dP/dt(-) 23%, and peak developed pressure 30%, while decreasing (p < 0.05) LV end diastolic pressure 38% and the time constant of relaxation (Tau) 16%. At 18 weeks after implantation, the NCM-3DFC improved LV function by increasing (p < 0.05) ejection fraction 54%, mean arterial pressure 20%, dP/dt(+) 16%, dP/dt(-) 34%, and peak developed pressure 39%. CONCLUSIONS: This study demonstrates that a multicellular, electromechanically organized cardiomyocyte scaffold, constructed in vitro by seeding NCM onto 3DFC, can improve LV function long-term when implanted in rats with CHF.


Assuntos
Estimulação Cardíaca Artificial , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Isquemia Miocárdica/fisiopatologia , Isquemia Miocárdica/terapia , Miócitos Cardíacos/transplante , Neovascularização Fisiológica/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Função Ventricular Esquerda/fisiologia , Animais , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Ecocardiografia , Insuficiência Cardíaca/patologia , Hemodinâmica/fisiologia , Isquemia Miocárdica/patologia , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley , Volume Sistólico/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-23143565

RESUMO

Electric field mapping is commonly used to identify irregular conduction pathways in the heart (e.g., arrhythmia) and brain (e.g., epilepsy). Ultrasound current source density imaging (UCSDI), based on the acoustoelectric (AE) effect, is a promising new technique for mapping electrical current in four dimensions with enhanced resolution. The frequency and pulse shape of the ultrasound beam affect the sensitivity and spatial resolution of UCSDI. In this study, we explore the effects of ultrasound transducer frequency bandwidth and coded excitation pulses for UCSDI and the inherent tradeoff between sensitivity and spatial resolution. We used both simulations and bench-top experiments to image a time-varying electrical dipole in 0.9% NaCl solution. To study the effects of ultrasound bandwidth, we chose two ultrasound transducers with different center frequencies (1.0 and 2.25 MHz). For coded excitation, we measured the AE voltage signal with different chirp excitations. As expected, higher bandwidth correlated with improved spatial resolution at the cost of sensitivity. On the other hand, chirp excitation significantly improved sensitivity (3.5 µV/mA) compared with conventional square pulse excitation (1.6 µV/mA) at 1 MHz. Pulse compression achieved spatial resolution similar to that obtained using square pulse excitation, demonstrating enhanced detection sensitivity without loss of resolution. Optimization of the time duration of the chirp pulse and frequency sweep rate can be further used to improve the quality of UCSDI.


Assuntos
Ultrassonografia/instrumentação , Ultrassonografia/métodos , Simulação por Computador , Modelos Teóricos , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Transdutores
6.
IEEE Netw ; 2012: 910-913, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25364099

RESUMO

Ultrasound current source density imaging (UCSDI) is a noninvasive technique for mapping electric current fields in 4D (space + time) with the resolution of ultrasound imaging. This approach can potentially overcome limitations of conventional electrical mapping procedures often used during treatment of cardiac arrhythmia or epilepsy. However, at physiologic currents, the detected acoustoelectric (AE) interaction signal in tissue is very weak. In this work, we evaluated coded ultrasound excitation (chirps) for improving the sensitivity of UCSDI for mapping the electrocardiogram (ECG) in a live rabbit heart preparation. Results confirmed that chirps improved detection of the AE signal by as much as 6.1 dB compared to a square pulse. We further demonstrated mapping the ECG using a clinical intracardiac catheter, 1 MHz ultrasound transducer and coded excitation. B-mode pulse echo and UCSDI revealed regions of high current flow in the heart wall during the peak of the ECG. These improvements to UCSDI are important steps towards translation of this new technology to the clinic for rapidly mapping the cardiac activation wave.

7.
Ultrasonics ; 51(5): 561-70, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21232777

RESUMO

Sensitization in 5XXX aluminum alloys is an insidious problem characterized by the gradual formation and growth of beta phase (Mg(2)Al(3)) at grain boundaries, which increases the susceptibility of alloys to intergranular corrosion (IGC) and intergranular stress-corrosion cracking (IGSCC). The degree of sensitization (DoS) is currently quantified by the ASTM G67 Nitric Acid Mass Loss Test, which is destructive and time consuming. A fast, reliable, and non-destructive method for rapid detection and the assessment of the condition of DoS in AA5XXX aluminum alloys in the field is highly desirable. In this paper, we describe a non-destructive method for measurements of DoS in aluminum alloys with an electromagnetic acoustic transducer (EMAT). AA5083 aluminum alloy samples were sensitized at 100°C with processing times varying from 7days to 30days. The DoS of sensitized samples was first quantified with the ASTM 67 test in the laboratory. Both ultrasonic velocity and attenuation in sensitized specimens were then measured using EMAT and the results were correlated with the DoS data. We found that the longitudinal wave velocity was almost a constant, independent of the sensitization, which suggests that the longitudinal wave can be used to determine the sample thickness. The shear wave velocity and especially the shear wave attenuation are sensitive to DoS. Relationships between DoS and the shear velocity, as well as the shear attenuation have been established. Finally, we performed the data mining to evaluate and improve the accuracy in the measurements of DoS in aluminum alloys with EMAT.


Assuntos
Ligas/química , Alumínio/química , Teste de Materiais/instrumentação , Sistemas Microeletromecânicos/instrumentação , Transdutores , Ultrassonografia/instrumentação , Ligas/análise , Alumínio/análise , Desenho de Equipamento , Análise de Falha de Equipamento
8.
Rev Sci Instrum ; 78(6): 063704, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17614613

RESUMO

Quartz tuning forks mounted with sharp tips provide an alternate method to silicon microcantilevers for probing the tip-substrate interaction in scanning probe microscopy. The high quality factor and stable resonant frequency of the tuning fork allow accurate measurements of small shifts in the resonant frequency as the tip approaches the substrate. To permit an accurate measure of surface interaction forces, the electrical and piezoelectromechanical properties of a tuning fork have been characterized using a fiber optical interferometer.


Assuntos
Algoritmos , Análise de Falha de Equipamento/métodos , Manometria/instrumentação , Microscopia de Varredura por Sonda/instrumentação , Transdutores , Calibragem , Desenho de Equipamento , Análise de Falha de Equipamento/normas , Manometria/normas , Microscopia de Varredura por Sonda/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estresse Mecânico , Estados Unidos , Vibração
9.
Nano Lett ; 6(12): 2893-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17163726

RESUMO

Conductive atomic force microscopy has been used to characterize single GaN nanorod Schottky and p-n junction diodes. The ideality factor, reverse breakdown voltage, and the Schottky barrier height of individual nanorod diodes were compared to those from conventional thin-film diodes. Large-area contacts, enabling diodes with arrays of GaN nanorods in parallel, were also fabricated and their electrical characteristics investigated. The defect-free nature of the GaN nanorods and enhanced tunneling effects due to nanoscale contacts have been invoked to explain the electrical behavior of the nanorod diodes.

10.
J Nanosci Nanotechnol ; 6(11): 3455-9, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17252788

RESUMO

Tuning forks mounted with sharp tips provide an alternate method to silicon microcantilevers for probing the tip-substrate interaction in scanning probe microscopy. The high quality factor and stable resonant frequency of the tuning fork allow accurate measurements of small shifts in the resonant frequency as the tip approaches the substrate. To permit an accurate measure of surface interaction forces, the electrical and piezomechanical properties of a tuning fork has been characterized using techniques derived from scanning probe microscopy. After proper calibration, representative interaction force data for a conventional Si tip and an HOPG substrate are obtained under ambient conditions.


Assuntos
Nanotecnologia/instrumentação , Nanotecnologia/métodos , Dióxido de Silício/química , Calibragem , Eletrônica , Mecânica , Microscopia de Força Atômica , Microscopia de Varredura por Sonda , Oscilometria , Quartzo/química , Silício/química , Estresse Mecânico , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...