Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Discov Nano ; 18(1): 107, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644377

RESUMO

Dense and flat La[Formula: see text]NiFeO[Formula: see text] (LNFO) films were fabricated on the indium tin oxide-coated glass (ITO/glass) substrate by sol-gel method. The bipolar resistive switching behavior (BRS) could be maintained in 100 cycles and remained after 30 days, indicating that the LNFO-based RS device owned good memory stability. Surprisingly, the multilevel RS characteristics were firstly observed in the Au/LNFO/ITO/glass device. The high resistance states (HRSs) and low resistance state (LRS) with the maximum ratio of [Formula: see text] 500 could be remained stably in 900 s and 130 cycles, demonstrating the fine retention and endurance ability of this LNFO-based RS device. The BRS behavior of Au/LNFO/ITO/glass devices primarily obeyed the SCLC mechanism controlled by oxygen vacancies (OVs) dispersed in the LNFO layer. Under the external electric field, injected electrons were captured or discharged by OVs during trapping or detrapping process in the LNFO layer. Thus, the resistive state switched between HRS and LRS reversibly. Moreover, the modulation of Schottky-like barrier formed at the Au/LNFO interface was contributed to the resistive states switchover. It was related to the change in OVs located at the dissipative region near the Au/LNFO interface. The multilevel RS ability of LNFO-based devices in this work provides an opportunity for researching deeply on the high density RS memory in lead-free double perovskite oxides-based devices.

3.
Nanoscale Res Lett ; 16(1): 178, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34902094

RESUMO

High-density Cs2AgBiBr6 films with uniform grains were prepared by a simple one-step and low-temperature sol-gel method on indium tin oxide (ITO) substrates. An explicit tristate bipolar resistance switching behavior was observed in the Pt/Cs2 AgBiBr6/ITO/glass devices under irradiation of 10 mW/cm2 (445 nm). This behavior was stable over 1200 s. The maximum ratio of the high and low resistance states was about 500. Based on the analysis of electric properties, valence variation and absorption spectra, the resistive switching characteristics were attributed to the trap-controlled space charge-limited current mechanism due to the bromine vacancies in the Cs2AgBiBr6 layer. On the other hand, it is suggested that the ordering of the Schottky-like barrier located at Pt/Cs2AgBiBr6 affects the three-state resistance switching behavior under light irradiation. The ability to adjust the photoelectrical properties of Cs2AgBiBr6-based resistive switching memory devices is a promising strategy to develop high-density memory.

4.
Nanomaterials (Basel) ; 11(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064022

RESUMO

Light-modulated lead-free perovskites-based memristors, combining photoresponse and memory, are promising as multifunctional devices. In this work, lead-free double perovskite Cs2AgBiBr6 films with dense surfaces and uniform grains were prepared by the low-temperature sol-gel method on indium tin oxide (ITO) substrates. A memory device based on a lead-free double perovskite Cs2AgBiBr6 film, Pt/Cs2AgBiBr6/ITO/glass, presents obvious bipolar resistive switching behavior. The ROFF/RON ratio under 445 nm wavelength light illumination is ~100 times greater than that in darkness. A long retention capability (>2400 s) and cycle-to-cycle consistency (>500 times) were observed in this device under light illumination. The resistive switching behavior is primarily attributed to the trap-controlled space-charge-limited current mechanism caused by bromine vacancies in the Cs2AgBiBr6 medium layer. Light modulates resistive states by regulating the condition of photo-generated carriers and changing the Schottky-like barrier of the Pt/Cs2AgBiBr6 interface under bias voltage sweeping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...