Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 286: 127823, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38959523

RESUMO

Plant-associated streptomycetes play important roles in plant growth and development. However, knowledge of volatile-mediated crosstalk between Streptomyces spp. and plants remains limited. In this study, we investigated the impact of volatiles from nine endophytic Streptomyces strains on the growth and development of plants. One versatile strain, Streptomyces setonii WY228, was found to significantly promote the growth of Arabidopsis thaliana and tomato seedlings, confer salt tolerance, and induce early flowering and increased fruit yield following volatile treatment. Analysis of plant growth-promoting traits revealed that S. setonii WY228 could produce indole-3-acetic acid, siderophores, ACC deaminase, fix nitrogen, and solubilize inorganic phosphate. These capabilities were further confirmed through genome sequencing and analysis. Volatilome analysis indicated that the volatile organic compounds emitted from ISP-2 medium predominantly comprised sesquiterpenes and 2-ethyl-5-methylpyrazine. Further investigations showed that 2-ethyl-5-methylpyrazine and sesquiterpenoid volatiles were the primary regulators promoting growth, as confirmed by experiments using the terpene synthesis inhibitor phosphomycin, pure compounds, and comparisons of volatile components. Transcriptome analysis, combined with mutant and inhibitor studies, demonstrated that WY228 volatiles promoted root growth by activating Arabidopsis auxin signaling and polar transport, and enhanced root hair development through ethylene signaling activation. Additionally, it was confirmed that volatiles can stimulate plant abscisic acid signaling and activate the MYB75 transcription factor, thereby promoting anthocyanin synthesis and enhancing plant salt stress tolerance. Our findings suggest that aerial signaling-mediated plant growth promotion and abiotic stress tolerance represent potentially overlooked mechanisms of Streptomyces-plant interactions. This study also provides an exciting strategy for the regulation of plant growth and the improvement of horticultural crop yields within sustainable agricultural practices.


Assuntos
Arabidopsis , Ácidos Indolacéticos , Tolerância ao Sal , Streptomyces , Compostos Orgânicos Voláteis , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Streptomyces/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Estresse Salino , Transdução de Sinais , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas , Carbono-Carbono Liases/metabolismo , Fosfatos/metabolismo
2.
Int J Biol Macromol ; 253(Pt 1): 126717, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673153

RESUMO

Microbial exopolysaccharides (EPSs) can promote plants growth and protect them against various abiotic stresses, but the role of actinobacteria-produced EPSs in plant growth promoting is still less known. Here, we aim to explore the effect of EPSs from an endophyte Glutamicibacter halophytocota KLBMP 5180 on tomato seeds germination and seedlings growth under salt stress. Our study revealed that 2.0 g/L EPSs resulted in increased seed germination rate by 23.5 % and 11.0 %, respectively, under 0 and 200 mM NaCl stress conditions. Further pot experiment demonstrated that EPSs significantly promoted seedlings growth under salt stress, with increased height, root length and fibrous roots number. Plant physiological traits revealed that EPSs increased chlorophyll content, enhanced the activity of antioxidant enzymes, soluble sugar, and K+ concentration in seedlings; malondialdehyde and Na+ contents were reduced. Additionally, auxin, abscisic acid, jasmonic acid, and salicylic acid were accumulated significantly in seedlings after EPSs treatment. Furthermore, we identified 1233 differentially expressed genes, and they were significantly enriched in phytohormone signal transmission, phenylpropanoid biosynthesis, and protein processing in endogenous reticulum pathways, etc. Our results suggest that KLBMP 5180-produced EPSs effectively ameliorated NaCl stress in tomato plants by triggering complex regulation mechanism, and showed application potentiality in agriculture.


Assuntos
Micrococcaceae , Solanum lycopersicum , Cloreto de Sódio/farmacologia , Estresse Salino , Tolerância ao Sal , Plântula , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...