Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049083

RESUMO

To achieve sustainable utilization of a large amount of mine solid waste, this study investigated the performance of self-compacting coal gangue-filled backfill (SCFB) containing biomass fly ash (BFA) generated from biomass power plants as a supplementary cementitious material (SCM). The correlations between the physical structure and compressive strength of SCFB samples were obtained by ultrasonic pulse velocity (UPV). The failure process of the SCFB samples was monitored by the digital image correlation (DIC) technique, and the stress-strain relationship and failure pattern were also analyzed. The micro-morphological structure and hydration products of SCFB samples were evaluated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and backscattered electron imaging (SEM-BSE). The results show that the usage of 30~40% BFA in SCFB improves the physical structure and strength of the samples. The compressive strength and UPV value of SCFB samples with different water-to-cement (w/c) ratios showed a similar trend of increasing and then gradually decreasing as the proportion of ordinary Portland cement (OPC) replaced by BFA increased. BFA exhibits better reactivity and filling effect in SCFB samples with a high w/c ratio. The peak stress of SCFB samples gradually decreases, and resistance to deformation gradually weakens with the increase in w/c ratios, while the DIC results further verify the mechanical experimental results. Microstructural analysis revealed that reducing the w/c ratio and incorporating specific ratios of BFA can reduce the thickness of the interface transition zone (ITZ) and porosity. The results of the study will provide theoretical guidance for the modification, stability monitoring, and strengthening of SCFB.

2.
PLoS One ; 18(4): e0283378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079605

RESUMO

Freeze-thaw erosion is the main reason for rock mass instability in cold regions and poses major threats to public safety. In this study, the stress threshold, energy, and strain field evolution of sandstone and the variation in stress intensity factor of fractures in various stress fields were all investigated after freeze-thaw cycles by uniaxial compression tests and digital image correlation technology. The results show that the elastic modulus, crack initiation stress, and peak stress all fell by 97%, 92.5%, and 89.9%, respectively, as the number of freeze-thaw cycles approaches 80. Elastic energy's storage capacity also dropped from 0.85 to 0.17. Sandstone's strain was increased by freeze-thaw erosion, which also improved ductility and shortened the cracking time. The stress intensity factor at the crack tip was positively correlated with the tip inclination angle and negatively correlated with the number of freeze-thaw cycles. This study provides a useful reference for understanding the stability of rock masses and the characteristics of crack derivation in cold regions.


Assuntos
Congelamento , Módulo de Elasticidade
3.
Materials (Basel) ; 15(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35591341

RESUMO

Cemented paste backfill (CPB) has become a significant structural material in most mines across the world. In this study, the effects of chemical rheological additives including viscosity modifying agent (i.e., polyacrylamide) and polycarboxylate superplasticizer (PCE) on fresh and hardened properties of CPB with different water-to-solid (W/S) ratios and water-to-cement (W/C) ratios were investigated. The microstructure of CPB specimens was also characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and backscattered electron image (SEM-BSE). The obtained results indicate that PAM (polyacrylamide) dosage and W/S are the most significant parameters influencing the workability of fresh CPB mixtures. For the hardened CPB specimens, the decreasing W/S ratio leads to higher flexural and compressive strength values and lower dry shrinkage strains. The interfacial transition zone (ITZ) between the cement matrix and the tailings sand was also observed to be narrower, with fewer micro cracks and capillary pores. Meanwhile, the existence of PAM decreased the number of hydration products and retarded the hydration reaction. Overall, the CPBs with high W/C ratios (i.e., 1.0 and 1.2), low W/S ratios (i.e., 0.3), and moderate amounts of rheological additives (i.e., 0.05% PAM and 1.0% PCE) have excellent fresh and hardened properties. The findings of this study contribute to better optimization of CPB mixtures in backfill construction, bringing benefits of low costs and low environmental impacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...