Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15649, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977748

RESUMO

In order to enhance the hyperspectral camouflage efficacy of stealth coatings against a natural vegetative backdrop, LiCl, known for its significant hygroscopic properties, was incorporated into green Mg-Al layered double hydroxide (Mg-Al LDHs) material. Micron-sized composite microspheres were subsequently synthesized via the spray-drying granulation technique. The structure, morphology, and chemical composition of these microspheres were thoroughly characterized by X-ray diffraction, scanning electron microscopy, laser particle size analysis, nitrogen adsorption-desorption isotherms, and Fourier-transform infrared spectroscopy. The effect of LiCl content on the moisture absorption capacity and near-infrared reflectance spectra of the microspheres was systematically evaluated. We found that incorporating an optimal amount of LiCl into the internal pores of the Mg-Al LDHs microspheres did not compromise their smooth surface morphology and uniform particulate distribution. Notably, when the LiCl content was 10%, the maximum saturation moisture uptake ratio of the coating increased to 0.75 g/g. This hygroscopicity significantly enhanced the absorption and scattering of near-infrared radiation by the coating while concurrently improving its ability to modulate the shape and reflectance of both the visible and near-infrared spectral curves. Spectral congruence between the synthetic coating and natural green foliage was quantified at 97.41%. Moreover, this performance was maintained over 10 cycles of programmed drying and re-humidification, and the coating consistently demonstrated stable hygroscopic properties and sustained over 95% spectral congruence. These optimized artificial coatings were found to effectively confuse hyperspectral classification algorithms, thus blending seamlessly into a natural foliage backdrop. This study provides a new method for regulating VIS and NIR spectral (visible-near infrared spectrum) features, which will be critical for applications in advanced hyperspectral camouflage materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...