Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16199, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003312

RESUMO

Sustainable multi-story building designs are gaining increasing attention in light of the green development of the building industry. Recently, many studies have been conducted to determine the optimized embodied energy considering size of structural members and materials strength using a single objective function. In this context, the current study adopted a multi-objective function based on cost and Embodied Energy (EE) for the sustainable design of the entire multi-story building. A BuildingEnergy computer program is used to assess the energy consumption performance of a multi-story reinforcement cement concrete building. Based on the proposed method, an analysis is carried out to compare the optimal solutions for multi-story building. Furthermore, a detailed parametric study was conducted to explore the main factors for energy-efficient column and beam design. The results revealed that with a comparison of the most "carbon-friendly" and "cost-friendly" solutions, an added cost of 6-7% can contribute up to a 13% emission reduction. The sectional dimensions, steel rebar, concrete strengths, cost ratio, building height, and eccentricity remarkably influence sustainable design, cost optimization, and minimum carbon emission. Overall, this study could help to define cost-effective and energy-efficient structural members. Eventually, the EE is confirmed to be a feasible parameter for designing more sustainable multi-story RCC buildings.

2.
Sci Rep ; 14(1): 5666, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454024

RESUMO

Low computational efficiency and non-linearity behaviour make the simulation of the overall building structure problematic to attain with a single dynamic or static method. Thus, this paper uses a plastic deformation (PD) method based on concrete plasticity theory (CPT) for comparative analysis of multi-storey reinforcement cement concrete (RCC) and composite buildings under common and rare earthquake loads. For this purpose, a 15-storey tall building was selected for analysis using ABAQUS software. At first, a possible building model was created and then plastic deformation analysis was performed using the new PD method under both common and rare earthquakes. After that, a nonlinear time history analysis was conducted, and the results of plastic strain distribution, lateral displacement, peak acceleration, storey stiffness, shear force, storey drift, normalised shear, and top deflection of the RCC and composite buildings were studied deeply. The fundamental time period of the RCC model was found to be 5.2 s while the fundamental time period of the composite model was 6 s. Under common and rare earthquake leads, the peak acceleration of the RCC building was 19% and 22% higher than composite buildings, respectively. Under common and rare seismic loads, the top deflections of the composite building were 33% and 36% higher than those of RCC buildings, respectively. In the case of the RCC building, it was found in this study that higher peak acceleration (PA) of the ground motion led to higher storey top displacement, storey drift, shear force and top deflection under both ground motions. Numerical results suggested that the use of composite structure is more durable than RCC structure. It was also concluded that the PD method could also be effectively used for the analysis of RCC and composite buildings under dynamic loads.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...