Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 26(6): 917-931, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714852

RESUMO

Upon endoplasmic reticulum (ER) stress, activation of the ER-resident transmembrane protein kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1) initiates a key branch of the unfolded protein response (UPR) through unconventional splicing generation of the transcription factor X-box-binding protein 1 (XBP1s). Activated IRE1 can form large clusters/foci, whose exact dynamic architectures and functional properties remain largely elusive. Here we report that, in mammalian cells, formation of IRE1α clusters is an ER membrane-bound phase separation event that is coupled to the assembly of stress granules (SGs). In response to different stressors, IRE1α clusters are dynamically tethered to SGs at the ER. The cytosolic linker portion of IRE1α possesses intrinsically disordered regions and is essential for its condensation with SGs. Furthermore, disruption of SG assembly abolishes IRE1α clustering and compromises XBP1 mRNA splicing, and such IRE1α-SG coalescence engenders enrichment of the biochemical components of the pro-survival IRE1α-XBP1 pathway during ER stress. Our findings unravel a phase transition mechanism for the spatiotemporal assembly of IRE1α-SG condensates to establish a more efficient IRE1α machinery, thus enabling higher stress-handling capacity.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases , Proteínas Serina-Treonina Quinases , Proteína 1 de Ligação a X-Box , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Endorribonucleases/metabolismo , Endorribonucleases/genética , Humanos , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Animais , Splicing de RNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/genética , Grânulos de Estresse/metabolismo , Grânulos de Estresse/genética , Fatores de Transcrição de Fator Regulador X/metabolismo , Fatores de Transcrição de Fator Regulador X/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Resposta a Proteínas não Dobradas , Camundongos , Células HeLa , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/genética , Transdução de Sinais
2.
Nat Metab ; 6(1): 78-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38191667

RESUMO

The coexistence of brown adipocytes with low and high thermogenic activity is a fundamental feature of brown adipose tissue heterogeneity and plasticity. However, the mechanisms that govern thermogenic adipocyte heterogeneity and its significance in obesity and metabolic disease remain poorly understood. Here we show that in male mice, a population of transcription factor jun-B (JunB)-enriched (JunB+) adipocytes within the brown adipose tissue exhibits lower thermogenic capacity compared to high-thermogenic adipocytes. The JunB+ adipocyte population expands in obesity. Depletion of JunB in adipocytes increases the fraction of adipocytes exhibiting high thermogenic capacity, leading to enhanced basal and cold-induced energy expenditure and protection against diet-induced obesity and insulin resistance. Mechanistically, JunB antagonizes the stimulatory effects of PPARγ coactivator-1α on high-thermogenic adipocyte formation by directly binding to the promoter of oestrogen-related receptor alpha, a PPARγ coactivator-1α downstream effector. Taken together, our study uncovers that JunB shapes thermogenic adipocyte heterogeneity, serving a critical role in maintaining systemic metabolic health.


Assuntos
Resistência à Insulina , Camundongos , Masculino , Animais , PPAR gama/metabolismo , Adipócitos Marrons/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Dieta Hiperlipídica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cell Rep ; 42(8): 112971, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37578864

RESUMO

Fatty acid synthase (FASN) maintains de novo lipogenesis (DNL) to support rapid growth in most proliferating cancer cells. Lipogenic acetyl-coenzyme A (CoA) is primarily produced from carbohydrates but can arise from glutamine-dependent reductive carboxylation. Here, we show that reductive carboxylation also occurs in the absence of DNL. In FASN-deficient cells, reductive carboxylation is mainly catalyzed by isocitrate dehydrogenase-1 (IDH1), but IDH1-generated cytosolic citrate is not utilized for supplying DNL. Metabolic flux analysis (MFA) shows that FASN deficiency induces a net cytosol-to-mitochondria citrate flux through mitochondrial citrate transport protein (CTP). Previously, a similar pathway has been shown to mitigate detachment-induced oxidative stress in anchorage-independent tumor spheroids. We further report that tumor spheroids show reduced FASN activity and that FASN-deficient cells acquire resistance to oxidative stress in a CTP- and IDH1-dependent manner. Collectively, these data indicate that by inducing a cytosol-to-mitochondria citrate flux, anchorage-independent malignant cells can gain redox capacity by trading off FASN-supported rapid growth.


Assuntos
Ácido Cítrico , Isocitrato Desidrogenase , Ácido Cítrico/metabolismo , Citosol/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Citratos/metabolismo , Estresse Oxidativo , Óxido Nítrico Sintase/metabolismo , Ácido Graxo Sintases/metabolismo , Mitocôndrias/metabolismo , Lipogênese
4.
Elife ; 122023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37417552

RESUMO

The production of beige adipocytes following cold exposure is blocked as mice get older and leads to changes in the expression of metabolic genes.


Assuntos
Adipócitos Bege , Camundongos , Animais , Proteína Desacopladora 1/metabolismo , Termogênese , Temperatura Baixa
5.
Nat Metab ; 5(6): 917-919, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37337124
6.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993662

RESUMO

Fatty acid synthase (FASN) maintains de novo lipogenesis (DNL) to support rapid growth in most proliferating cancer cells. Lipogenic acetyl-CoA is primarily produced from carbohydrates but can arise from glutamine-dependent reductive carboxylation under hypoxia. Here we show that reductive carboxylation also occurs in the absence of DNL in cells with defective FASN. In this state, reductive carboxylation was mainly catalyzed by isocitrate dehydrogenase-1 (IDH1) in the cytosol, but IDH1-generated citrate was not used for DNL. Metabolic flux analysis (MFA) revealed that FASN-deficiency induced a net cytosol-to-mitochondria citrate flux through citrate transport protein (CTP). A similar pathway was previously shown to mitigate detachment-induced mitochondrial reactive oxygen species (mtROS) in anchorage-independent tumor spheroids. We further demonstrate that FASN-deficient cells acquire resistance to oxidative stress in a CTP- and IDH1-dependent manner. Together with the reduced FASN activity in tumor spheroids, these data indicate that anchorage-independent malignant cells trade FASN-supported rapid growth for a cytosol-to-mitochondria citrate flux to gain redox capacity against detachment-induced oxidative stress.

7.
Compr Physiol ; 12(4): 4119-4132, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214190

RESUMO

As a dynamic endocrine organ, white adipose tissue (WAT) stores lipids and plays a critical role in maintaining whole-body energy homeostasis and insulin sensitivity. A large group of the population over 65 years old suffer from increased WAT mass, especially in the visceral location. Visceral adiposity accelerates aging through promoting age-associated chronic conditions, significantly shortening life expectancy. Unlike WAT, brown adipose tissue (BAT) functions as an effective energy sink that burns and disposes of excess lipids and glucose upon activation of thermogenesis. Unfortunately, the thermogenic activity of BAT declines during aging. New appreciation of cellular and functional remodeling of WAT and BAT during aging has emerged in recent years. Efforts are underway to explore the potential underlying mechanisms behind these age-associated alterations in WAT and BAT and the impact of these alterations on whole-body metabolism. Lastly, it is intriguing to translate our knowledge obtained from animal models to the clinic to prevent and treat age-associated metabolic disorders. © 2022 American Physiological Society. Compr Physiol 12: 4119-4132, 2022.


Assuntos
Metabolismo Energético , Termogênese , Tecido Adiposo Marrom/metabolismo , Envelhecimento , Animais , Glucose/metabolismo , Lipídeos
8.
Biology (Basel) ; 11(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-36101404

RESUMO

Breastfeeding offers a broad spectrum of health benefits for infants. However, overnutrition and a steady increase in maternal obesity in the U.S. have made it harder for many mothers to produce and express breastmilk, and the quality of milk from obese mothers is also frequently compromised. Adipocytes, the primary cell type in the non-lactating breast, display a drastic morphological and functional change during lactation in mice. Lipid-filled adipocytes undergo lipolysis, and lipid droplets disappear to provide fatty acids and energy for breastmilk production. Once the animal stops lactation, these lipid-depleted adipocytes return as lipid-laden cells. This dynamic remodeling of the tissue is likely the result of active intercellular communications. Connexin43 (Cx43) is the most abundant connexin in the mammary adipose tissue that makes up the gap junctions for direct intercellular communications. Its expression is increased during lactation and reduced in obese mammary adipose tissue, which is resistant to lactation-induced remodeling. However, whether Cx43 is required for adipocyte remodeling and breastmilk production to support neonates' growth has not been established. In this study, we used doxycycline-inducible adipocyte-specific Cx43-deleted mice and demonstrated that adipocyte Cx43 played a vital role in determining the carbohydrate levels in breastmilk, which may subsequently affect neonates' growth.

9.
Cell Mol Life Sci ; 79(10): 517, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36103091

RESUMO

OPA1, a dynamin-related GTPase mutated in autosomal dominant optic atrophy, is essential for the fusion of the inner mitochondrial membrane. Although OPA1 deficiency leads to impaired mitochondrial morphology, the role of OPA1 in central carbon metabolism remains unclear. Here, we aim to explore the functional role and metabolic mechanism of OPA1 in cell fitness beyond the control of mitochondrial fusion. We applied [U-13C]glucose and [U-13C]glutamine isotope tracing techniques to OPA1-knockout (OPA1-KO) mouse embryonic fibroblasts (MEFs) compared to OPA1 wild-type (OPA1-WT) controls. Furthermore, the resulting tracing data were integrated by metabolic flux analysis to understand the underlying metabolic mechanism through which OPA1 deficiency reprograms cellular metabolism. OPA1-deficient MEFs were depleted of intracellular citrate, which was consistent with the decreased oxygen consumption rate in these cells with mitochondrial fission that is not balanced by mitochondrial fusion. Whereas oxidative glucose metabolism was impaired, OPA1-deficient cells activated glutamine-dependent reductive carboxylation and subsequently relied on this reductive metabolism to produce cytosolic citrate as a predominant acetyl-CoA source for de novo fatty acid synthesis. Prevention of cytosolic glutamine reductive carboxylation by GSK321, an inhibitor of isocitrate dehydrogenase 1 (IDH1), largely repressed lipid synthesis and blocked cell proliferation in OPA1-deficient MEFs. Our data support that, when glucose oxidation failed to support lipogenesis and proliferation in cells with unbalanced mitochondrial fission, OPA1 deficiency stimulated metabolic anaplerosis into glutamine-dependent reductive carboxylation in an IDH1-mediated manner.


Assuntos
GTP Fosfo-Hidrolases , Glutamina , Animais , Citratos/metabolismo , Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Glucose/metabolismo , Glutamina/genética , Glutamina/metabolismo , Camundongos
10.
Nat Metab ; 4(9): 1166-1184, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36123394

RESUMO

Adipose tissue undergoes thermogenic remodeling in response to thermal stress and metabolic cues, playing a crucial role in regulating energy expenditure and metabolic homeostasis. Endoplasmic reticulum (ER) stress is associated with adipose dysfunction in obesity and metabolic disease. It remains unclear, however, if ER stress-signaling in adipocytes mechanistically mediates dysregulation of thermogenic fat. Here we show that inositol-requiring enzyme 1α (IRE1α), a key ER stress sensor and signal transducer, acts in both white and beige adipocytes to impede beige fat activation. Ablation of adipocyte IRE1α promotes browning/beiging of subcutaneous white adipose tissue following cold exposure or ß3-adrenergic stimulation. Loss of IRE1α alleviates diet-induced obesity and augments the anti-obesity effect of pharmacologic ß3-adrenergic stimulation. Notably, IRE1α suppresses stimulated lipolysis and degrades Ppargc1a messenger RNA through its RNase activity to downregulate the thermogenic gene program. Hence, blocking IRE1α bears therapeutic potential in unlocking adipocytes' thermogenic capacity to combat obesity and metabolic disorders.


Assuntos
Endorribonucleases , Inositol , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Serina-Treonina Quinases , Adipócitos/metabolismo , Adrenérgicos/farmacologia , Animais , Endorribonucleases/genética , Endorribonucleases/metabolismo , Inositol/farmacologia , Camundongos , Obesidade/genética , Obesidade/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade de RNA , RNA Mensageiro , Termogênese/genética
11.
Environ Sci Pollut Res Int ; 29(5): 6656-6669, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34455557

RESUMO

Waste incineration is a process of full combustion reaction between waste and oxygen at high temperature. It is a new problem whether the special natural environmental conditions of Tibet Plateau, such as low air pressure, low oxygen content, and low temperature, will affect the waste incineration in the plateau area. In this work, the influence of different parameters on MSW incineration efficiency and flue gas emission were investigated. The results showed that the temperatures exhibited a significant impact on the flue gas emission. Under the lower temperature, CO was determined to be the main pollutant. With the increase of temperature, NOx became the main pollutant. The optimal temperature range of flue gas emission was between 800 and 900°C. A slight negative pressure in incinerator was benefit for incineration system safety and flue gas emissions. The optimal range was -50 to 0Pa. Lower oxygen content (3-6%) in the incinerator affected the incineration efficiency and flue gas emission. Meanwhile, the high oxygen content had no obvious impact on the flue gas emission, but the cost increased and the service life of the incinerator was affected. The optimal oxygen content in the incinerator was controlled at 6-8%. Furthermore, the air temperatures, pressures, and oxygen content in the natural environment had no significant effect on MSW incineration process. Increasing the air volume would bring about the increase of N2 in the incinerator. This work provides the basic data support for MSW incineration technology in plateau area.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Poluentes Atmosféricos/análise , Incineração , Oxigênio , Resíduos Sólidos/análise , Tibet
12.
EMBO Rep ; 22(8): e51910, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34232566

RESUMO

Adipose tissue plays a major role in maintaining organismal metabolic equilibrium. Control over the fate decision from mesenchymal stem cells (MSCs) to adipocyte differentiation involves coordinated command of phosphorylation. Protein phosphatase 2A plays an important role in Wnt pathway and adipocyte development, yet how PP2A complexes actively respond to adipocyte differentiation signals and acquire specificity in the face of the promiscuous activity of its catalytic subunit remains unknown. Here, we report the PP2A phosphatase B subunit B56α is specifically induced during adipocyte differentiation and mediates PP2A to dephosphorylate GSK3ß, thereby blocking Wnt activity and driving adipocyte differentiation. Using an inducible B56α knock-out mouse, we further demonstrate that B56α is essential for gonadal adipose tissue development in vivo and required for the fate decision of adipocytes over osteoblasts. Moreover, we show B56α expression is driven by the adipocyte transcription factor PPARγ thereby establishing a novel link between PPARγ signaling and Wnt blockade. Overall, our results reveal B56α is a necessary part of the machinery dictating the transition from pre-adipocyte to mature adipocyte and provide fundamental insights into how PP2A complex specifically and actively regulates unique signaling pathway in biology.


Assuntos
Células-Tronco Mesenquimais , Proteína Fosfatase 2 , Adipócitos/metabolismo , Adipogenia/genética , Animais , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fosforilação , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo
13.
Front Endocrinol (Lausanne) ; 12: 651763, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953697

RESUMO

Brown adipocyte in brown adipose tissue (BAT) specializes in expending energy through non-shivering thermogenesis, a process that produces heat either by uncoupling protein 1 (UCP1) dependent uncoupling of mitochondrial respiration or by UCP1 independent mechanisms. Apart from this, there is ample evidence suggesting that BAT has an endocrine function. Studies in rodents point toward its vital roles in glucose and lipid homeostasis, making it an important therapeutic target for treating metabolic disorders related to morbidities such as obesity and type 2 diabetes. The rediscovery of thermogenically active BAT depots in humans by several independent research groups in the last decade has revitalized interest in BAT as an even more promising therapeutic intervention. Over the last few years, there has been overwhelming interest in understanding brown adipocyte's developmental lineages and how brown adipocyte uniquely utilizes energy beyond UCP1 mediated uncoupling respiration. These new discoveries would be leveraged for designing novel therapeutic interventions for metabolic disorders.


Assuntos
Tecido Adiposo Marrom/patologia , Metabolismo Energético , Obesidade/metabolismo , Proteína Desacopladora 1/biossíntese , Adipócitos/citologia , Adipócitos Marrons/metabolismo , Animais , Sistema Endócrino , Ácidos Graxos/metabolismo , Homeostase , Humanos , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Termogênese
14.
FEBS J ; 288(12): 3647-3662, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34028971

RESUMO

Brown adipose tissue (BAT) is well known to burn calories through uncoupled respiration, producing heat to maintain body temperature. This 'calorie wasting' feature makes BAT a special tissue, which can function as an 'energy sink' in mammals. While a combination of high energy intake and low energy expenditure is the leading cause of overweight and obesity in modern society, activating a safe 'energy sink' has been proposed as a promising obesity treatment strategy. Metabolically, lipids and glucose have been viewed as the major energy substrates in BAT, while succinate, lactate, branched-chain amino acids, and other metabolites can also serve as energy substrates for thermogenesis. Since the cataplerotic and anaplerotic reactions of these metabolites interconnect with each other, BAT relies on its dynamic, flexible, and complex metabolism to support its special function. In this review, we summarize how BAT orchestrates the metabolic utilization of various nutrients to support thermogenesis and contributes to whole-body metabolic homeostasis.


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético/genética , Metabolismo dos Lipídeos/genética , Obesidade/genética , Termogênese/genética , Adipócitos Marrons/citologia , Tecido Adiposo Marrom/citologia , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Fluordesoxiglucose F18/administração & dosagem , Glucose/metabolismo , Homeostase/genética , Humanos , Ácido Láctico/metabolismo , Obesidade/diagnóstico por imagem , Obesidade/metabolismo , Obesidade/patologia , Tomografia por Emissão de Pósitrons , Ácido Succínico/metabolismo
15.
Ecotoxicol Environ Saf ; 211: 111913, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33493721

RESUMO

Effective management of municipal solid waste (MSW) is essential for the conservation of ecosystems in the Qinghai-Tibetan Plateau (QTP). Considering the landfill is the major method of MSW management, the factors influencing groundwater contamination near MSW landfill sites in the QTP were studied, based on field investigations, environmental impact assessment, and meteorological and hydrogeological analyses. Results indicated that the groundwater was contaminated heavily by nitrate (PI = 7.5), particularly in the landfill without an anti-seepage system, followed by nitrite (PI = 3.5) and heavy metals including arsenic (PI = 4.1) and hexavalent chromium (PI = 2.8). Total hardness, total dissolved solids, nitrate, and lead in the groundwater near the investigated landfill sites were significantly different between the monsoon and the cold seasons. Both the rainfall infiltration and the leachate infiltration were considerably limited by environmental characteristics in the QTP, including high evaporation, low rainfall, and the presence of permafrost. Soil sample contamination near landfill sites was considered as moderate (28.6% of the soil samples) and moderate to heavy (71.4% of the soil samples), based on the geoaccumulation index of mercury. However, comparatively low generation and concentrations of leachate and good topsoil quality (PI = 0.84) reduced the quantity of pollutants infiltrating into the groundwater. The alkaline leachate (pH = 7.45-9.23) and soil (pH = 7.08-8.72) also considerably decreased the concentrations of contaminants dissolved in the infiltrated rainfall and leachate. Additionally, low groundwater level can delay preferential flow and enhance attenuation. Therefore, the groundwater contamination near the landfill sites was simply point pollution, which was influenced by leachate, soil, climate, and hydrogeology characteristics in the QTP. The anti-seepage system is a potential strategy for use in the prevention of groundwater contamination by MSW landfills in the QTP.


Assuntos
Monitoramento Ambiental , Água Subterrânea/química , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise , Ecossistema , Água Subterrânea/análise , Metais Pesados/análise , Nitratos/análise , Eliminação de Resíduos/métodos , Estações do Ano , Solo , Resíduos Sólidos/análise , Tibet , Gerenciamento de Resíduos
16.
EMBO Rep ; 21(11): e50085, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33043581

RESUMO

The cultured brown adipocytes can oxidize glucose in vitro, but it is still not fully clear whether brown adipose tissue (BAT) could completely oxidize glucose in vivo. Although positron emission tomography (PET) with 18 F-fluorodeoxyglucose (18 F-FDG) showed a high level of glucose uptake in the activated BAT, the non-metabolizable 18 F-FDG cannot fully demonstrate intracellular glucose metabolism. Through in vivo [U-13 C]glucose tracing, here we show that chronic cold exposure dramatically activates glucose oxidation in BAT and the browning/beiging subcutaneous white adipose tissue (sWAT). Specifically, chronic cold exposure enhances glucose flux into the mitochondrial TCA cycle. Metabolic flux analysis models that ß3-adrenergic receptor (ß3-AR) agonist significantly enhances the flux of mitochondrial pyruvate uptake through mitochondrial pyruvate carrier (MPC) in the differentiated primary brown adipocytes. Furthermore, in vivo MPC inhibition blocks cold-induced glucose oxidation and impairs body temperature maintenance in mice. Together, mitochondrial pyruvate uptake and oxidation serve an important energy source in the chronic cold exposure activated BAT and beige adipose tissue, which supports a role for glucose oxidation in brown fat thermogenesis.


Assuntos
Tecido Adiposo Marrom , Glucose , Tecido Adiposo Branco , Animais , Temperatura Baixa , Fluordesoxiglucose F18 , Camundongos , Termogênese
17.
Br J Cancer ; 122(9): 1288-1297, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32147668

RESUMO

BACKGROUND: Previous studies suggested that mdivi-1 (mitochondrial division inhibitor), a putative inhibitor of dynamin-related protein (DRP1), decreased cancer cell proliferation through inducing mitochondrial fusion and altering oxygen consumption. However, the metabolic reprogramming underlying the DRP1 inhibition is still unclear in cancer cells. METHODS: To better understand the metabolic effect of DRP1 inhibition, [U-13C]glucose isotope tracing was employed to assess mdivi-1 effects in several cancer cell lines, DRP1-WT (wild-type) and DRP1-KO (knockout) H460 lung cancer cells and mouse embryonic fibroblasts (MEFs). RESULTS: Mitochondrial staining confirmed that mdivi-1 treatment and DRP1 deficiency induced mitochondrial fusion. Surprisingly, metabolic isotope tracing found that mdivi-1 decreased mitochondrial oxidative metabolism in the lung cancer cell lines H460, A549 and the colon cancer cell line HCT116. [U-13C]glucose tracing studies also showed that the TCA cycle intermediates had significantly lower enrichment in mdivi-1-treated cells. In comparison, DRP1-WT and DRP1-KO H460 cells had similar oxidative metabolism, which was decreased by mdivi-1 treatment. Furthermore, mdivi-1-mediated effects on oxidative metabolism were independent of mitochondrial fusion. CONCLUSIONS: Our data suggest that, in cancer cells, mdivi-1, a putative inhibitor of DRP1, decreases oxidative metabolism to impair cell proliferation.


Assuntos
Dinaminas/genética , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Quinazolinonas/farmacologia , Células A549 , Animais , Isótopos de Carbono/química , Isótopos de Carbono/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Dinaminas/antagonistas & inibidores , Técnicas de Inativação de Genes , Glucose/química , Glucose/farmacologia , Células HCT116 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos
18.
J Clin Invest ; 130(1): 247-257, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31573981

RESUMO

Brown adipose tissue (BAT), as the main site of adaptive thermogenesis, exerts beneficial metabolic effects on obesity and insulin resistance. BAT has been previously assumed to contain a homogeneous population of brown adipocytes. Utilizing multiple mouse models capable of genetically labeling different cellular populations, as well as single-cell RNA sequencing and 3D tissue profiling, we discovered a brown adipocyte subpopulation with low thermogenic activity coexisting with the classical high-thermogenic brown adipocytes within the BAT. Compared with the high-thermogenic brown adipocytes, these low-thermogenic brown adipocytes had substantially lower Ucp1 and Adipoq expression, larger lipid droplets, and lower mitochondrial content. Functional analyses showed that, unlike the high-thermogenic brown adipocytes, the low-thermogenic brown adipocytes have markedly lower basal mitochondrial respiration, and they are specialized in fatty acid uptake. Upon changes in environmental temperature, the 2 brown adipocyte subpopulations underwent dynamic interconversions. Cold exposure converted low-thermogenic brown adipocytes into high-thermogenic cells. A thermoneutral environment had the opposite effect. The recruitment of high-thermogenic brown adipocytes by cold stimulation is not affected by high-fat diet feeding, but it does substantially decline with age. Our results revealed a high degree of functional heterogeneity of brown adipocytes.


Assuntos
Adipócitos Marrons/metabolismo , Adiponectina/biossíntese , Tecido Adiposo Marrom/metabolismo , Regulação da Expressão Gênica/fisiologia , Termogênese/fisiologia , Proteína Desacopladora 1/biossíntese , Adipócitos Marrons/citologia , Tecido Adiposo Marrom/citologia , Animais , Camundongos
19.
Diabetes ; 68(10): 1874-1885, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31540940

RESUMO

Activated beige adipocytes have therapeutic potential due to their ability to improve glucose and lipid homeostasis. To date, the origin of beige adipocytes remains enigmatic. Whether beige cells arise through de novo differentiation from resident precursors or through reprogramming of mature white adipocytes has been a topic of intense discussion. Here, we offer our perspective on the natural origin of beige adipocytes in mice. In particular, we revisit recent lineage-tracing studies that shed light on this issue and offer new insight into how environmental housing temperatures early in life influence the mode of beige adipocyte biogenesis upon cold exposure later in life. We suggest a unified model in which beige adipocytes (UCP1+ multilocular cells) in rodents initially arise predominantly from progenitors (i.e., de novo beige adipogenesis) upon the first exposure to cold temperatures and then interconvert between "dormant beige" and "active beige" phenotypes (i.e., beige cell activation) upon subsequent changes in environmental temperature. Importantly, we highlight experimental considerations needed to visualize de novo adipogenesis versus beige cell activation in mice. A precise understanding of the cellular origins of beige adipocytes emanating in response to physiological and pharmacological stimuli may better inform therapeutic strategies to recruit beige adipocytes in vivo.


Assuntos
Adipócitos Bege/citologia , Adipogenia/fisiologia , Tecido Adiposo Branco/citologia , Animais , Humanos , Termogênese/fisiologia
20.
J Clin Invest ; 129(12): 5327-5342, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31503545

RESUMO

Dermal adipose tissue (also known as dermal white adipose tissue and herein referred to as dWAT) has been the focus of much discussion in recent years. However, dWAT remains poorly characterized. The fate of the mature dermal adipocytes and the origin of the rapidly reappearing dermal adipocytes at different stages remain unclear. Here, we isolated dermal adipocytes and characterized dermal fat at the cellular and molecular level. Together with dWAT's dynamic responses to external stimuli, we established that dermal adipocytes are a distinct class of white adipocytes with high plasticity. By combining pulse-chase lineage tracing and single-cell RNA sequencing, we observed that mature dermal adipocytes undergo dedifferentiation and redifferentiation under physiological and pathophysiological conditions. Upon various challenges, the dedifferentiated cells proliferate and redifferentiate into adipocytes. In addition, manipulation of dWAT highlighted an important role for mature dermal adipocytes for hair cycling and wound healing. Altogether, these observations unravel a surprising plasticity of dermal adipocytes and provide an explanation for the dynamic changes in dWAT mass that occur under physiological and pathophysiological conditions, and highlight the important contributions of dWAT toward maintaining skin homeostasis.


Assuntos
Adipócitos Brancos/citologia , Desdiferenciação Celular/fisiologia , Plasticidade Celular/fisiologia , Pele/citologia , Adipócitos Brancos/fisiologia , Animais , Diferenciação Celular , Separação Celular , Perfilação da Expressão Gênica , Folículo Piloso/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/citologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...