Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 395: 133546, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-35802979

RESUMO

Acrolein (ACR) is predominantly generated from oil-rich food during thermos- processing. Accumulation of ACR in vivo through food consumption has been associated with an increased risk of developing chronic diseases. Here, we investigated the inhibitory effect of octyl gallate (OG), a new food additive tolerant to high-temperature, alkaline and fat-soluble saturations, on the generation of ACR in OG-ACR, oil-Rancimat models, and real-world frying. Our results demonstrate that approximately 80% and 60% of ACR was eliminated by OG in the two models, respectively, and OG-ACR was detected in the deep-frying process using LC-MS/MS. The reaction pathways were clarified by synthesis and OG-ACR and OG-2ACR adduct structural elucidation. Our work reveals that the antibacterial activity of OG-ACR against Escherichia coli (gram-negative) was four times higher than that of OG. Thus, OG can be developed as a promising novel ACR scavenger for high-temperature food processing and an antibacterial agent in food storage.


Assuntos
Acroleína , Aditivos Alimentares , Acroleína/farmacologia , Cromatografia Líquida , Ácido Gálico/análogos & derivados , Espectrometria de Massas em Tandem
2.
Front Nutr ; 9: 889901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571903

RESUMO

This study focused on the formation of Maillard hazards in air fried fries, highlighting the correlation between the resultant physical properties of the fries and the formation of Maillard hazards. In the meantime, the effects of air frying on the in vitro starch digestibility of fries were explored. Potato strips were fried at various temperatures (180-200°C) and time (12-24 min). Results indicated that the extent of browning, hardness, and the contents of Maillard hazards (acrylamide, 5-hydroxymethylfurfural, methylglyoxal, and glyoxal) all increased steadily with air frying temperature and time. Moisture content were negatively correlated (p < 0.001) with Maillard hazards content and physicochemical properties except for L* with the correlation coefficients range from -0.53 to 0.94, and positively correlated with L* value with correlation coefficient was 0.91, hence, reducing the Maillard hazard exposure while maintaining the desired product quality can be achieved by controlling the moisture content of the air fried French fries. Compared with deep frying (180°C-6 min), air frying decreased acrylamide and 5-hydroxymethylfurfural content with the maximum reduction rate were 47.31 and 57.04%, respectively. In addition, the in vitro digestion results suggested that air frying resulted in higher levels of slowly digestible starch (48.54-58.42%) and lower levels of resistant starch (20.08-29.34%) as compared to those from deep frying (45.59 ± 4.89 and 35.22 ± 0.65%, respectively), which might contribute to more balanced blood sugar levels after consumption. Based on the above results, it was concluded that air frying can reduce the formation of food hazards and was relatively healthier.

3.
Front Nutr ; 9: 825365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284448

RESUMO

To reduce thermal processing hazards (TPHs), microwave baking has been extensively used in food thermal processing. In this study, the influence of microwave power and microwave time on the formation of TPHs and their precursors was explored in microwave-baked biscuits. The results indicated that the content of acrylamide, 5-hydroxymethylfurfural, methylglyoxal, and 3-deoxyglucosone increased linearly with the extension of microwave time (2, 2.5, and 3 min) and microwave power (440, 480, and 520 W). There was a significant correlation between the four TPHs. 3-Deoxyglucosone may directly or indirectly participate in the formation of the other three TPHs. The relationship between TPH levels with some heat-induced sensory characteristics was analyzed. The correlation between the sensory characteristics and the content of TPHs is L* > a* > hardness > Water activity (AW). The correlation coefficients between L* value and the four TPHs are -0.950, -0.891, -0.803, and -0.985. Furthermore, the content of TPHs produced by traditional baking and microwave baking under the same texture level was compared. Compared with traditional baking (190°C, 7 min), microwave baking at 440 W for 3 min successfully decrease methylglyoxal, 3-Deoxyglucosone, acrylamide, and 5-hydroxymethylfurfural content by 60.75, 30.19, 30.87, and 61.28%, respectively. Traditionally baked biscuits, which had a more obvious color, as characterized by lower L* value, larger a* and b* values, are more susceptible to the formation of TPHs. Therefore, microwave baking can reduce the generation of TPHs.

4.
Food Chem Toxicol ; 157: 112583, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34563632

RESUMO

2-Amino-3-methylimidazole[4,5-f]quinoline (IQ) is a harmful substance, mainly existing in protein-abundant thermally processed foods and polluted environments. This study investigated the hepatotoxicity of IQ by exposing zebrafish model organisms at 0, 8, 80, and 800 ng/mL concentrations for 35 days and was supposed to reveal the mechanism of IQ-induced oxidative stress and inflammation in the liver. The results showed that, after IQ exposure, alanine aminotransferase (ALT), aspartate aminotransferase (AST), reactive oxygen species (ROS), and malondialdehyde (MDA) levels in zebrafish liver increased significantly; meanwhile, significantly increased tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and interleukin-12 (IL-12) levels induced severe oxidative stress and inflammation; however, glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione s-transferase (GST) and glutathione peroxidase (GSH-Px) levels significantly decreased. The results indicated that the increased IQ exposure gradually aggravated pathological changes of zebrafish liver tissue (irregular cell morphology, cytoplasmic vacuolation, and inflammatory cell infiltration) and induced significant liver damage at last. Alterations in the expressions of genes and proteins involved in the IQ-induced TLR4/MAPK and TLR4/NF-κB pathways can elucidate the mechanism of its hepatotoxicity. The study provides evidence of IQ-induced hepatotoxicity and helps to draw attention to the health risks of dietary and environmental exposure to IQ.


Assuntos
Inflamação/tratamento farmacológico , Fígado/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quinolinas/toxicidade , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Animais , Western Blotting , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Peixe-Zebra
5.
J Agric Food Chem ; 69(32): 9025-9033, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-33459012

RESUMO

Food lipids play an important role in food quality, and their attributes contribute to texture, flavor, and nutrition. However, high-temperature processing leads to lipid peroxidation, degradation, and the formation of reactive carbonyl species (RCS), such as acrolein (ACR), glyoxal (GO), and methylglyoxal (MGO). We investigated the changes in the peroxidation value (POV), Rancimat induction time, formation and total amount of RCS, and inhibitory effects of synthetic polyphenol antioxidants on ACR/GO/MGO in plant oils during heating processing through an accelerated oxidation test using Rancimat. With increasing temperature and heating time, the amounts of ACR, GO, and MGO in oil increased and the level of ACR was about several times higher than that of GO and MGO. We also found that some amounts of ACR, GO, and MGO were produced at the initial stage before reaching the peak value of POV, even before oil oxidative rancidity, and the common antioxidant butyl hydroxyanisole (BHA)/butylated hydroxytoluene (BHT) could not remove them once they were generated. This is first time to purify PG-ACR-MGO and elucidate the structure based on analysis of their high resolution mass spectrometry and 1H, 13C, and two-dimensional nuclear magnetic resonance. We further found that PG rather than BHT and BHA efficiently trapped ACR, OG, and MGO to form adducts in oil and roasted beef burgers with corn oil. Additionally, after incubation at 80 °C, the trapping order of PG was as follows: ACR, MGO, and GO, and the adduct of PG-ACR was formed within 1 min; after 10 min, PG-MGO was generated; and three adducts formed at 15 min. However, PG could not trap ACR, GO, or MGO to form adducts at room temperature. This study provided novel knowledge to advance our understanding of the ability of synthetic polyphenol antioxidants to scavenge RCS simultaneously, such as ACR, MGO, and GO. Our findings demonstrated that PG, as an inhibitor of RCS, is suitable for medium- and high-temperature food processing but not for normal-temperature storage.


Assuntos
Antioxidantes , Polifenóis , Animais , Bovinos , Glioxal , Peroxidação de Lipídeos , Aldeído Pirúvico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...