Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Genet Genomics ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636730

RESUMO

Maize (Zea mays) is highly susceptible to waterlogging stress, which reduces both the yield and quality of this important crop. However, the molecular mechanism governing waterlogging tolerance is poorly understood. In this study, we identify a waterlogging- and ethylene-inducible gene ZmEREB179 that encodes an ethylene response factor (ERF) localized in the nucleus. Overexpression of ZmEREB179 in maize increases the sensitivity to waterlogging stress. Conversely, the zmereb179 knockout mutants are more tolerant to waterlogging, suggesting that ZmEREB179 functions as a negative regulator of waterlogging tolerance. A transcriptome analysis of the ZmEREB179-overexpressing plants reveals that the ERF-type transcription factor modulates the expression of various stress-related genes, including ZmEREB180. We find that ZmEREB179 directly targets the ZmEREB180 promoter and represses its expression. Notably, the analysis of a panel of 220 maize inbred lines reveals that genetic variations in the ZmEREB179 promoter (Hap2) are highly associated with waterlogging resistance. The functional association of Hap2 with waterlogging resistance is tightly co-segregated in two F2 segregating populations, highlighting its potential applications in breeding programs. Our findings shed light on the involvement of the transcriptional cascade of ERF genes in regulating plant-waterlogging tolerance.

2.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36982510

RESUMO

Apetala2/ethylene response factor (AP2/ERF) is one of the largest families of transcription factors, regulating growth, development, and stress response in plants. Several studies have been conducted to clarify their roles in Arabidopsis and rice. However, less research has been carried out on maize. In this review, we systematically identified the AP2/ERFs in the maize genome and summarized the research progress related to AP2/ERF genes. The potential roles were predicted from rice homologs based on phylogenetic and collinear analysis. The putative regulatory interactions mediated by maize AP2/ERFs were discovered according to integrated data sources, implying that they involved complex networks in biological activities. This will facilitate the functional assignment of AP2/ERFs and their applications in breeding strategy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Filogenia , Melhoramento Vegetal , Etilenos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Arabidopsis/genética
4.
Nat Commun ; 13(1): 5708, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175574

RESUMO

Maize early endosperm development is initiated in coordination with elimination of maternal nucellar tissues. However, the underlying mechanisms are largely unknown. Here, we characterize a major quantitative trait locus for maize kernel size and weight that encodes an EXPANSIN gene, ZmEXPB15. The encoded ß-expansin protein is expressed specifically in nucellus, and positively controls kernel size and weight by promoting nucellus elimination. We further show that two nucellus-enriched transcription factors (TFs), ZmNAC11 and ZmNAC29, activate ZmEXPB15 expression. Accordingly, these two TFs also promote kernel size and weight through nucellus elimination regulation, and genetic analyses support their interaction with ZmEXPB15. Importantly, hybrids derived from a ZmEXPB15 overexpression line have increased kernel weight, demonstrates its potential value in breeding. Together, we reveal a pathway modulating the cellular processes of maternal nucellus elimination and early endosperm development, and an approach to improve kernel weight.


Assuntos
Melhoramento Vegetal , Zea mays , Família , Locos de Características Quantitativas , Fatores de Transcrição/genética , Aumento de Peso , Zea mays/genética
5.
J Integr Plant Biol ; 64(9): 1755-1769, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35796344

RESUMO

Carbohydrate partitioning is essential for plant growth and development, and its hindrance will result in excess accumulation of carbohydrates in source tissues. Most of the related mutants in maize (Zea mays L.) display impaired whole-plant sucrose transport, but other mechanisms affecting carbohydrate partitioning have seldom been reported. Here, we characterized chlorotic leaf3 (chl3), a recessive mutation causing leaf chlorosis with starch accumulation excessively in bundle sheath chloroplasts, suggesting that chl3 is defective in carbohydrate partitioning. Positional cloning revealed that the chl3 phenotype results from a frameshift mutation in ZmPHOH, which encodes starch phosphorylase 2. Two mutants in ZmPHOH exhibited the same phenotype as chl3, and both alleles failed to complement the chl3 mutant phenotype in an allelism test. Inactivation of ZmPHOH in chl3 leaves reduced the efficiency of transitory starch conversion, resulting in increased leaf starch contents and altered carbohydrate metabolism patterns. RNA-seq revealed the transcriptional downregulation of genes related to photosynthesis and carbohydrate metabolism in chl3 leaves compared to the wild type. Our results demonstrate that transitory starch remobilization is very important for cellular carbohydrate partitioning in maize, in which ZmPHOH plays an indispensable role.


Assuntos
Amido Fosforilase , Zea mays , Metabolismo dos Carboidratos/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Amido Fosforilase/metabolismo , Zea mays/metabolismo
6.
Theor Appl Genet ; 135(5): 1579-1589, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35179613

RESUMO

KEY MESSAGE: qHKW3, a quantitative trait locus for hundred-kernel weight, harbors the proposed causal gene Zm00001d044081, encoding a homeobox-leucine zipper protein (ATHB-4) that might affect kernel size and weight. Kernel size and weight are key traits that contribute greatly to grain yield per year in maize (Zea mays). Here, we developed the chromosome segment substitution line (CSSL), H15-6-2, with smaller kernel size and lower kernel weight across environments compared to the background line Ye478. Histological analysis suggested that a slower kernel filling rate of H15-6-2 contributes to its small-kernel size and reduced hundred-kernel weight. We identified a quantitative trait locus (QTL) explaining 23% of the phenotypic variation in hundred-kernel weight. This QTL, qHKW3, was fine mapped to an interval of approximately 40.66-kb harboring the gene Zm00001d044081. The upstream sequence and its expression level of Zm00001d044081 in kernels at 6 days after pollination (DAP) showed obvious differences between the near-isogenic lines HKW3Ye478 and HKW3H15-6-2. We further confirmed the effects of the Zm00001d044081 promoter on maize kernel size and weight in an independent association mapping panel with 513 lines by candidate regional association analysis. We propose that Zm00001d044081, which encodes the homeobox-leucine zipper protein ATHB-4, is the causal gene of qHKW3, representing an attractive target for the genetic improvement of maize yield.


Assuntos
Locos de Características Quantitativas , Zea mays , Mapeamento Cromossômico , Ligação Genética , Fenótipo , Sementes/genética , Zea mays/genética
7.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768744

RESUMO

RNA polymerase III (RNAPIII) contains 17 subunits forming 4 functional domains that control the different stages of RNAPIII transcription and are dedicated to the synthesis of small RNAs such as 5S rRNA and tRNAs. Here, we identified 23 genes encoding these subunits in Arabidopsis (Arabidopsis thaliana) and further analyzed 5 subunits (NRPC2, NRPC3, NRPC8, NRPABC1, and NRPABC2) encoded by 6 genes with different expression patterns and belonging to different sub-complexes. The knockdown of these genes repressed the expression of 5S rRNA and tRNAs, causing seed developmental arrest at different stages. Among these knockdown mutants, RNA-seq analysis revealed 821 common differentially expressed genes (DEGs), significantly enriched in response to stress, abscisic acid, cytokinins, and the jasmonic acid signaling pathway. Weighted gene co-expression network analysis (WGCNA) revealed several hub genes involved in embryo development, carbohydrate metabolic and lipid metabolic processes. We identified numerous unique DEGs between the mutants belonging to pathways, including cell proliferation, ribosome biogenesis, cell death, and tRNA metabolic processes. Thus, NRPC2, NRPC3, NRPC8, NRPABC1, and NRPABC2 control seed development in Arabidopsis by influencing RNAPIII activity and, thus, hormone signaling. Reduced expression of these subunit genes causes an insufficient accumulation of the total RNAPIII, leading to the phenotypes observed following the genetic knockdown of these subunits.


Assuntos
Arabidopsis/genética , RNA Polimerase III/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citocininas/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , RNA Polimerase III/metabolismo , RNA de Transferência/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Transcrição Gênica , Transcriptoma/genética
8.
Theor Appl Genet ; 134(4): 1033-1045, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33459823

RESUMO

KEY MESSAGE: A key candidate gene for maize kernel length was fine mapped to an interval of 942 kb; the locus significantly increases kernel length (KL) and hundred-kernel weight (HKW). Kernel size is a major determinant of yield in cereals. Kernel length, one of the determining factors of kernel size, is a target trait for both domestication and artificial breeding. However, there are few reports of fine mapping and quantitative trait loci (QTLs)/cloned genes for kernel length in maize. In this project, a novel major QTL, named qKL9, controlling maize kernel length was identified. We verified the authenticity and stability of qKL9 via BC2F2 and BC3F1 populations, respectively, and ultimately mapped qKL9 to an ~ 942-kb genomic interval by testing the progenies of recombination events derived from BC3F2 and BC4F2 populations in multiple environments. Additionally, one new line (McqKL9-A) containing the ~ 942-kb segment was screened from the BC4F2 population. Combining transcriptome analysis between McqKL9-A and Mc at 6, 9 and 14 days after pollination and candidate regional association mapping, Zm00001d046723 was preliminarily identified as the key candidate gene for qKL9. Importantly, the replacement in the Mc line of the Mc's alleles by the V671's alleles in the qKL9 region improved the performances of single-cross hybrids obtained with elite lines, illustrating the potential value of this QTL for the genetic improvement in maize kernel-related traits. These findings facilitate molecular breeding for kernel size and cloning of the gene underlying qKL9, shedding light on the genetic basis of kernel size in maize.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Fenótipo , Melhoramento Vegetal/métodos , Locos de Características Quantitativas , Sementes/anatomia & histologia , Zea mays/crescimento & desenvolvimento , Ligação Genética , Tamanho do Órgão , Sementes/genética , Sementes/crescimento & desenvolvimento , Zea mays/genética
9.
J Integr Plant Biol ; 62(12): 1895-1909, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32965083

RESUMO

Cuticular wax is a natural barrier on terrestrial plant organs, which protects plants from damages caused by a variety of stresses. Here, we report the identification and functional characterization of a cuticular-wax-related gene, Zea mays L. SEMI-ROLLED LEAF 5 (ZmSRL5). The loss-of-function mutant srl5, which was created by a 3,745 bp insertion in the first intron that led to the premature transcript, exhibited abnormal wax crystal morphology and distribution, which, in turn, caused the pleiotropic phenotypes including increased chlorophyll leaching and water loss rate, decreased leaf temperature, sensitivity to drought, as well as semi-rolled mature leaves. However, total wax amounts showed no significant difference between wild type and semi-rolled leaf5 (srl5) mutant. The phenotype of srl5 was confirmed through the generation of two allelic mutants using CRISPR/Cas9. ZmSRL5 encodes a CASPARIAN-STRIP-MEMBRANE-DOMAIN-LIKE (CASPL) protein located in plasma membrane, and highly expressed in developing leaves. Further analysis showed that the expressions of the most wax related genes were not affected or slightly altered in srl5. This study, thus, primarily uncovers that ZmSRL5 is required for the structure formation of the cuticular wax and could increase the drought tolerance by maintaining the proper cuticular wax structure in maize.


Assuntos
Secas , Zea mays/fisiologia , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética
10.
Theor Appl Genet ; 133(11): 3139-3150, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32857170

RESUMO

KEY MESSAGE: qKRN8, a major QTL for kernel row number in maize, was fine mapped to an interval of ~ 520 kb on chromosome 8 and the key candidate gene was identified via expression analysis. Kernel row number (KRN) is one of the most important yield-influencing traits and is closely associated with female inflorescence development in maize (Zea mays L.). In this study, an F2:3 population derived from a cross between V54 (low KRN line) and Lian87 (high KRN line) was used to map quantitative trait loci (QTLs) conferring KRN in maize. We identified 12 QTLs for KRN in four environments, each explaining 1.40-14.95% of phenotypic variance. Among these, one novel major QTL (named qKRN8) was mapped to bin 8.03 in all four environments, explaining 8.79-14.95% of phenotypic variation. By combining map-based cloning with progeny testing of recombinants, we ultimately mapped qKRN8 to an ~ 520 kb genomic interval, harboring six putative candidate genes. Among them, one candidate gene showed contrasted expression level in immature ears of the near-isogenic lines qKRN8Lian87 and qKRN8V54. These findings should facilitate molecular breeding for KRN and the further identification of the polymorphism underlying this QTL.


Assuntos
Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Zea mays/genética , Mapeamento Cromossômico , Cruzamentos Genéticos , Ligação Genética , Marcadores Genéticos , Genótipo , Fenótipo , Sementes/genética
11.
Plant Physiol ; 184(1): 359-373, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32591429

RESUMO

Kernel size is an important factor determining grain yield. Although a number of genes affecting kernel development in maize (Zea mays) have been identified by analyzing kernel mutants, most of the corresponding mutants cannot be used in maize breeding programs due to low germination or incomplete seed development. Here, we characterized small kernel7, a recessive small-kernel mutant with a mutation in the gene encoding the second-largest subunit of RNA polymerase III (RNAPΙΙΙ; NRPC2). A frame shift in ZmNRPC2 leads to a premature stop codon, resulting in significantly reduced levels of transfer RNAs and 5S ribosomal RNA, which are transcribed by RNAPΙΙΙ. Loss-of-function nrpc2 mutants created by CRISPR/CAS9 showed significantly reduced kernel size due to altered endosperm cell size and number. ZmNRPC2 affects RNAPIII activity and the expression of genes involved in cell proliferation and endoreduplication to control kernel development via physically interacting with RNAPIII subunits RPC53 and AC40, transcription factor class C1 and Floury3. Notably, unlike the semidominant negative mutant floury3, which has defects in starchy endosperm, small kernel7 only affects kernel size but not the composition of kernel storage proteins. Our findings provide novel insights into the molecular network underlying maize kernel size, which could facilitate the genetic improvement of maize in the future.


Assuntos
Proteínas de Plantas/metabolismo , RNA Polimerase III/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Zea mays/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , RNA Polimerase III/genética , Zea mays/genética
12.
Genes (Basel) ; 11(3)2020 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121334

RESUMO

Waterlogging stress (WS) in a dynamic environment seriously limits plant growth, development, and yield. The regulatory mechanism underlying WS conditions at an early stage in maize seedlings is largely unknown. In the present study, the primary root tips of B73 seedlings were sampled before (0 h) and after (2 h, 4 h, 6 h, 8 h, 10 h, and 12 h) WS and then subjected to transcriptome sequencing, resulting in the identification of differentially expressed protein-coding genes (DEpcGs) and long non-coding RNAs (DElncRs) in response to WS. These DEpcGs were classified into nine clusters, which were significantly enriched in several metabolic pathways, such as glycolysis and methionine metabolism. Several transcription factor families, including AP2-EREBP, bZIP, NAC, bHLH, and MYB, were also significantly enriched. In total, 6099 lncRNAs were identified, of which 3190 were DElncRs. A co-expression analysis revealed lncRNAs to be involved in 11 transcription modules, 10 of which were significantly associated with WS. The DEpcGs in the four modules were enriched in the hypoxia response pathways, including phenylpropanoid biosynthesis, MAPK signaling, and carotenoid biosynthesis, in which 137 DElncRs were also co-expressed. Most of the co-expressed DElncRs were co-localized with previously identified quantitative trait loci associated with waterlogging tolerance. A quantitative reverse transcription-polymerase chain reaction analysis of DEpcG and DElncR expression among the 32 maize genotypes after 4 h of WS verified significant expression correlations between them as well as significant correlation with the phenotype of waterlogging tolerance. Moreover, the high proportion of hypoxia response elements in the promoter region increased the reliability of the DElncRs identified in this study. These results provide a comprehensive transcriptome in response to WS at an early stage of maize seedlings and expand our understanding of the regulatory network involved in hypoxia in plants.


Assuntos
RNA Longo não Codificante/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Zea mays/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Redes e Vias Metabólicas/genética , Fenótipo , Locos de Características Quantitativas/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Zea mays/metabolismo
13.
Plant Sci ; 288: 110205, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31521217

RESUMO

Maize kernel size and weight are essential contributors to its yield. So the identification of the genes controlling kernel size and weight can give us a chance to gain the yield. Here, we identified a small kernel mutant, Zea mays small kernel 9 (Zmsmk9), in maize. Cytological observation showed that the development of the endosperm and embryo was delayed in Zmsmk9 mutants at the early stages, resulting in a small kernel phenotype. Interestingly, despite substantial variation in kernel size, the germination of Zmsmk9 seeds was comparable to that of WT, and could develop into normal plants with upright leaf architecture. We cloned Zmsmk9 via map-based cloning. ZmSMK9 encodes a P-type pentatricopeptide repeat protein that targets to mitochondria, and is involved in RNA splicing in mitochondrial NADH dehydrogenase5 (nad5) intron-1 and intron-4. Consistent with the delayed development phenotype, transcriptome analysis of 12-DAP endosperm showed that starch and zeins biosynthesis related genes were dramatically down regulated in Zmsmk9, while cell cycle and cell growth related genes were dramatically increased. As a result, ZmSMK9 is a novel gene required for the splicing of nad5 intron-1 and intron-4, kernel development, and plant architecture in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , NADH Desidrogenase/genética , Proteínas de Plantas/genética , Zea mays/genética , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Germinação/genética , Íntrons , Proteínas Mitocondriais/metabolismo , NADH Desidrogenase/química , NADH Desidrogenase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sementes/fisiologia , Zea mays/crescimento & desenvolvimento
14.
G3 (Bethesda) ; 9(8): 2677-2686, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31196888

RESUMO

The expression systems of the mitochondrial genes are derived from their bacterial ancestors, but have evolved many new features in their eukaryotic hosts. Mitochondrial RNA splicing is a complex process regulated by families of nucleus-encoded RNA-binding proteins, few of which have been characterized in maize (Zea mays L.). Here, we identified the Zea mays small kernel 3 (Zmsmk3) candidate gene, which encodes a mitochondrial transcription termination factor (mTERF) containing two mTERF motifs, which is conserved in monocotyledon; and the target introns were also quite conserved during evolution between monocotyledons and dicotyledons. The mutations of Zmsmk3 led to arrested embryo and endosperm development, resulting in small kernels. A transcriptome of 12 days after pollination endosperm analysis revealed that the starch biosynthetic pathway and the zein gene family were down-regulated in the Zmsmk3 mutant kernels. ZmSMK3 is localized in mitochondria. The reduced expression of ZmSmk3 in the mutant resulted in the splicing deficiency of mitochondrial nad4 intron1 and nad1 intron4, causing a reduction in complex I assembly and activity, impairing mitochondria structure and activating the alternative respiratory pathway. So, the results suggest that ZmSMK3 is required for the splicing of nad4 intron 1 and nad1 intron 4, complex I assembly and kernel development in maize.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Íntrons , Desenvolvimento Vegetal/genética , Splicing de RNA , Zea mays/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Plântula/genética , Plântula/metabolismo
15.
Plant Biotechnol J ; 17(12): 2286-2298, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31033158

RESUMO

Group VII ethylene response factors (ERFVIIs) play important roles in ethylene signalling and plant responses to flooding. However, natural ERFVII variations in maize (ZmERFVIIs) that are directly associated with waterlogging tolerance have not been reported. Here, a candidate gene association analysis of the ZmERFVII gene family showed that a waterlogging-responsive gene, ZmEREB180, was tightly associated with waterlogging tolerance. ZmEREB180 expression specifically responded to waterlogging and was up-regulated by ethylene; in addition, its gene product localized to the nucleus. Variations in the 5'-untranslated region (5'-UTR) and mRNA abundance of this gene under waterlogging conditions were significantly associated with survival rate (SR). Ectopic expression of ZmEREB180 in Arabidopsis increased the SR after submergence stress, and overexpression of ZmEREB180 in maize also enhanced the SR after long-term waterlogging stress, apparently through enhanced formation of adventitious roots (ARs) and regulation of antioxidant levels. Transcriptomic assays of the transgenic maize line under normal and waterlogged conditions further provided evidence that ZmEREB180 regulated AR development and reactive oxygen species homeostasis. Our study provides direct evidence that a ZmERFVII gene is involved in waterlogging tolerance. These findings could be applied directly to breed waterlogging-tolerant maize cultivars and improve our understanding of waterlogging stress.


Assuntos
Etilenos/farmacologia , Inundações , Genes de Plantas , Estresse Fisiológico , Zea mays/genética , Arabidopsis , Regulação da Expressão Gênica de Plantas , Raízes de Plantas , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/fisiologia , Água , Zea mays/fisiologia
16.
Genetics ; 211(1): 305-316, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30389804

RESUMO

Genomic deletions are pervasive in the maize (Zea mays L.) genome, and play important roles in phenotypic variation and adaptive evolution. However, little is known about the biological functions of these genomic deletions. Here, we report the biological function of a megabase-scale deletion, which we identified by position-based cloning of the multi-trait weakened (muw) mutant, which is inherited as a single recessive locus. MUW was mapped to a 5.16-Mb region on chromosome 2. The 5.16-Mb deletion in the muw mutant led to the loss of 48 genes and was responsible for a set of phenotypic abnormities, including wilting leaves, poor yield performance, reduced plant height, increased stomatal density, and rapid water loss. While muw appears to have resulted from double-stranded break repair that was not dependent on intragenomic DNA homology, extensive duplication of maize genes may have mitigated its effects and facilitated its survival.


Assuntos
Variação Biológica da População , Deleção Cromossômica , Zea mays/genética , Pleiotropia Genética , Polimorfismo Genético
17.
Theor Appl Genet ; 131(11): 2299-2310, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30062652

RESUMO

KEY MESSAGE: A key candidate gene, GRMZM2G110141, which could be used in marker-assisted selection in maize breeding programs, was detected among the 16 genetic loci associated with waterlogging tolerance identified through genome-wide association study. Waterlogging stress seriously affects the growth and development of upland crops such as maize (Zea mays L.). However, the genetic basis of waterlogging tolerance in crop plants is largely unknown. Here, we identified genetic loci for waterlogging tolerance-related traits by conducting a genome-wide association study using maize phenotypes evaluated in the greenhouse under waterlogging stress and normal conditions. A total of 110 trait-single nucleotide polymorphism associations spanning 16 genomic regions were identified; single associations explained 2.88-10.67% of the phenotypic variance. Among the genomic regions identified, 14 co-localized with previously detected waterlogging tolerance-related quantitative trail loci. Furthermore, 33 candidate genes involved in a wide range of stress-response pathways were predicted. We resequenced a key candidate gene (GRMZM2G110141) in 138 randomly selected inbred lines and found that variations in the 5'-UTR and in the mRNA abundance of this gene under waterlogging conditions were significantly associated with leaf injury. Furthermore, we detected favorable alleles of this gene and validated the favorable alleles in two different recombinant inbred line populations. These alleles enhanced waterlogging tolerance in segregating populations, strongly suggesting that GRMZM2G110141 is a key waterlogging tolerance gene. The set of waterlogging tolerance-related genomic regions and associated markers identified here could be valuable for isolating waterlogging tolerance genes and improving this trait in maize.


Assuntos
Genes de Plantas , Estresse Fisiológico , Água , Zea mays/genética , Alelos , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Zea mays/fisiologia
18.
J Exp Bot ; 68(16): 4571-4581, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28981788

RESUMO

Group II introns are common in the mitochondrial genome of higher plant species. The splicing of these introns is a complex process involving the synergistic action of multiple factors. However, few of these factors have been characterized in maize. In this study, we found that the Empty pericarp11 (Emp11) gene, which encodes a P-type pentatricopeptide repeat (PPR) protein, is required for the development of maize seeds. The loss of Emp11 function seriously impairs embryo and endosperm development, resulting in empty pericarp seeds in maize, and alteration in Emp11 expression leads to quantitative variation in kernel size and weight. We found that the emp11 mutants showed a failure in nad1 intron splicing, exhibited a severe reduction in complex I assembly and activity, mitochondrial structure disturbances, and an increase in alternative oxidase AOX2 and AOX3 levels. Interestingly, the emp11 phenotype was very severe in the W22 inbred line but could be partially recovered in B73 BC2F2 segregating ears. These results suggest that EMP11 serves as a factor for the splicing of mitochondrial nad1 introns and is required for mitochondrial function to ensure proper seed development in maize.


Assuntos
Mitocôndrias/genética , Proteínas de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Zea mays/genética , Regulação da Expressão Gênica de Plantas , Íntrons , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , NADH Desidrogenase/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Splicing de RNA , Sementes/genética , Zea mays/crescimento & desenvolvimento
19.
Sci Rep ; 7(1): 5688, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720816

RESUMO

The nuclear-encoded DAG-like (DAL) gene family plays critical roles in organelle C-to-U RNA editing in Arabidopsis thaliana. However, the origin, diversification and functional divergence of DAL genes remain unclear. Here, we analyzed the genomes of diverse plant species and found that: DAL genes are specific to spermatophytes, all DAL genes share a conserved gene structure and protein similarity with the inhibitor I9 domain of subtilisin genes found in ferns and mosses, suggesting that DAL genes likely arose from I9-containing proproteases via exon shuffling. Based on phylogenetic inference, DAL genes can be divided into five subfamilies, each composed of putatively orthologous and paralogous genes from different species, suggesting that all DAL genes originated from a common ancestor in early seed plants. Significant type I functional divergence was observed in 6 of 10 pairwise comparisons, indicating that shifting functional constraints have contributed to the evolution of DAL genes. This inference is supported by the finding that functionally divergent amino acids between subfamilies are predominantly located in the DAL domain, a critical part of the RNA editosome. Overall, these findings shed light on the origin of DAL genes in spermatophytes and outline functionally important residues involved in the complexity of the RNA editosome.


Assuntos
Genes de Plantas , Família Multigênica/genética , Filogenia , Proteínas de Plantas/genética , Traqueófitas/genética , Metilação de DNA , Evolução Molecular , Edição de RNA , Zea mays/genética
20.
Plant J ; 91(1): 132-144, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28346745

RESUMO

In higher plants, many mitochondrial genes contain group II-type introns that are removed from RNAs by splicing to produce mature transcripts that are then translated into functional proteins. However, the factors involved in the splicing of mitochondrial introns and their biological functions are not well understood in maize. Here, we isolated an empty pericarp 10 (emp10) mutant and identified the underlying gene by map-based cloning. Emp10 encodes a P-type mitochondria-targeted pentatricopeptide repeat (PPR) protein with 10 PPR motifs. Loss of Emp10 function results in splicing defect of the first intron of nad2, a gene encoding subunit 2 of NADH dehydrogenase (also called complex I). The emp10 mutant has undetectable activity of complex I and has arrested development of embryo and endosperm, and thus defective seeds with empty pericarp. Additionally, the basal endosperm transfer layer cells were severely affected, indicating the deficiency of cell wall ingrowths in the emp10 kernels. Moreover, the alternative respiratory pathway involving alternative oxidase was significantly induced in the emp10 mutant. These results suggest that EMP10 is specifically required for the cis-splicing of mitochondrial nad2 intron 1, embryogenesis and endosperm development in maize.


Assuntos
Íntrons/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Mitocondriais/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Splicing de RNA/genética , Splicing de RNA/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Zea mays/genética , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...