Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cardiovasc Dev Dis ; 9(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36547422

RESUMO

OBJECTIVE: The purpose of this study is to evaluate the preliminary safety and effect of a pulsed electric field (PEF) ablation system. METHODS: The pulmonary veins (PVs) and superior vena cava (SVC) were isolated with the pulsed field ablation (PFA) system, which included a PEF generator and an electrode. The effects of PFA were investigated in six porcines using a novel circular catheter with combined functions (mapping/ablation) designed to work with a cardiac mapping system. The PEF generator delivered a train of biphasic pulsed electric pulses with a high amplitude (800-2000 V) and short pulse duration. The voltage mapping, PVs and SVC potentials, ostial diameters, and phrenic nerve and esophagus viability data were collected 4 weeks later, after which the animals were subsequently euthanized for gross histopathology analysis. RESULTS: PFA 100% isolated the PVs and SVC with four applications with a mean pulse number of 100-150 pulses, causing no muscle convulsion. PFA does not cause PV stenosis or phrenic nerve dysfunction. Histological analysis confirmed 100% transmurally without any venous stenoses or phrenic injuries. Pathology follow-up showed that PFA had selectively ablated cardiomyocytes but spared blood vessels, the esophagus, and phrenic nerves; after ablation, the myocardial tissue showed homogeneous fibrosis. CONCLUSION: The PFA system is safe and feasible in the preliminary porcine model, which can effectively isolate PVs and SVCs. Transmural tissue damage can be achieved without phrenic palsy or stenosis.

2.
Front Cardiovasc Med ; 9: 1012020, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225956

RESUMO

Objective: We investigate the characteristics of histological damage to myocardial cells in the ablation region and surrounding areas of the left ventricular epicardium in rabbits using our self-developed cardiac pulsed electric field (PEF) ablation instrument and ablation catheter. Methods: Forty eight New Zealand rabbits underwent ablation on the left ventricular myocardium after open-heart exposure with a cardiac arrhythmia PEF ablation device and ablation catheter developed by the Medical Translation Laboratory of Pulsed Electric Field Technology in Zhejiang Province. The ablation parameters were set as biphasic electrical pulses; voltage, ±800 V; pulse width, 10 µs; interphase delay, 500 us. Six rabbits were included in the sham group and 42 other rabbits were randomly divided into immediately, 6-h, 1-, 3-day, 1-, 2-, and 4-week post-ablation groups, with six rabbits in each group. Creatine kinase- (CK)-MB isoenzyme (CK-MB), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) levels were measured before and at different time points after PEF ablation to analyze their dynamic evolution. Masson staining of tissue block sections of left ventricular myocardial ablation and adjacent tissue heart specimens was performed, and the occurrence of TUNEL apoptosis in myocardium tissue was analyzed. Results: All rabbits completed the PEF ablation procedure and the follow-up process. After PEF ablation, the levels of cardiac enzymes, including CK-MB, CK, and AST, increased significantly, peaking 1-3 days after the procedure. In particular, those of CK and CK-MB increased by 15-20 times but returned to the preoperative level after 2 weeks. Based on general observation, it was found that the myocardium in the ablation area was swollen immediately after PEF ablation. Masson staining analysis revealed that cardiomyocytes were broken and infiltrated by erythrocytes after 6 h. After 1 day, the cells started to experience atrophy and necrosis; after 3 days, fibrotic replacement of the necrotic area became obvious. Then, by 4 weeks, the myocardial cells were completely replaced by hyperplasia. Apoptosis occurred significantly at 6 h and peaked at 24 h post-ablation, demonstrating a 37.7-fold increase; apoptotic cell counts decreased significantly at 3 days post-ablation, and no significant apoptotic cardiomyocytes were seen after 1 week. Conclusion: After PEF ablation, cardiomyocytes showed apoptotic process and dyed, at least partially, through a secondary necrosis, the ablation boundary was clear, the ablation area was replaced by structurally intact fibroblasts, no island myocardium tissue were seen, and the ablation area vessels and nerves were not affected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...