Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Onco Targets Ther ; 13: 5979-5991, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606806

RESUMO

INTRODUCTION: Saponin of Schizocapsa plantaginea Hance I (SSPH I), a novel bioactive phytochemical isolated from the rhizomes of Schizocapsa plantaginea, has been demonstrated to exhibit anti-cancer activity against various tumors in preclinical studies. However, the molecular mechanisms involved in the suppression of hepatocellular carcinoma (HCC) are poorly understood. The present study aimed at analyzing the effects of SSPH I on autophagy and apoptosis in vitro. METHODS: MTT and colony forming assays were used to detect cell viability and cell proliferation. Hoechst 33,258 staining and flow cytometry were used to determine apoptosis and ROS production. The apoptosis and autophagy-related protein expression levels were evaluated via Western blot assay. Characteristics of autophagy and apoptosis were observed by transmission electron microscopy. Lysosomal activity was stained with Lyso-Tracker Red and Magic Red Cathepsin B. RESULTS: The results showed that SSPH I exhibited potent anti-cancer activity and proliferation in HepG2 and BEL-7402 cells and inhibited HepG2 cells through inhibiting autophagy and promoting apoptosis. The mechanistic study indicated that the inhibition of autophagy of SSPH I was mediated by blocking autophagosome-lysosome fusion. Additionally, we found that SSPH I could mediate the activation of MAPK/ERK1/2 signaling pathway, and the use of NAC (ROS inhibitor) and U0126 (MEK1/2 inhibitor) converted the effect of SSPH I on apoptosis and autophagy in HepG2 cells. CONCLUSION: These data suggest that SSPH I induces tumor cells apoptosis and reduces autophagy in vitro by inducing ROS and activating MAPK/ERK1/2 signaling pathway, indicating that SSPH I might be a novel agent for the treatment of HCC.

2.
Chin J Nat Med ; 16(1): 29-40, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29425588

RESUMO

The underground cane of Schizocapsa plantaginea (Hance) has long been used by Chinese ethnic minority as a constituent of anti-cancer formulae. Saponins are abundant secondary metabolic products located in the underground cane of this plant. The potential therapeutic effects of total saponins isolated from Schizocapsa plantaginea (Hance) (SSPH) on human hepatocellular carcinoma (HCC) were tested in vitro in human liver cancer cell lines, SMMC-7721 and Bel-7404. Apoptosis and cell cycle arrest were determined using flow cytometry, caspase activation was determined by ELISA, and PARP, cleaved PARP, mitogen-activated protein kinase (MAPK) expression and phosphorylation were measured using Western blotting analysis. In vivo anti-HCC effects of SSPH were verified in nude mouse xenograft model. SSPH exerted markedly inhibitory effect on HCC cell proliferation in time- and concentration-dependent manner. Moreover, SSPH significantly induced apoptosis through caspase-dependent signaling and arrested cell cycle at G2/M phase. These anti-proliferation effects of SSPH were associated with up-regulated phosphorylation of extracellular signal-regulated kinase-1/2 (Erk1/2) and c-jun-NH2-kinase-1/2 (JNK1/2) and reduced phosphorylation of p38MAPK. Furthermore, inhibitors of ERK, UO126, and JNK, SP600125 inhibited the anti-proliferation effects by SSPH, suggesting that Erk and JNK were the effector molecules in SSPH induced anti-proliferative action. During in vivo experiments, SSPH was found to inhibit xenograft tumor growth in nude mice, with a similar mechanism in vitro. Our study confirmed that SSPH exerted antagonistic effects on human liver cancer cells both in vitro and in vivo. Molecular mechanisms underlying SSPH action might be closely associated with MAPK signaling pathways. These results indicated that SSPH has potential therapeutic effects on HCC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Dioscoreaceae/química , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Saponinas/farmacologia , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/toxicidade , Caspases/genética , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Xenoenxertos/efeitos dos fármacos , Xenoenxertos/crescimento & desenvolvimento , Humanos , Concentração Inibidora 50 , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Fosforilação/efeitos dos fármacos , Tubérculos/química , Poli(ADP-Ribose) Polimerase-1/metabolismo , Saponinas/isolamento & purificação , Saponinas/toxicidade
3.
J Int Med Res ; 44(6): 1395-1402, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27856932

RESUMO

Objective Taccaoside, a steroidal saponin, has been shown to be cytotoxic, although the mechanism of cytotoxicity remains unclear. This study examined the effect of taccaoside on the human hepatocellular carcinoma (HCC) cell lines SMMC-7721 and Bel-7404. Methods The antiproliferative effect of taccaoside were measured using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. Cells were stained with Hoechst 33258 to observe morphology. Cell cycle and apoptosis were analysed by flow cytometry. Caspase activation was detected using specific assays, and PARP, Bax and Bcl-2 expression were analysed using western blotting. Results Taccaoside showed antiproliferative effect on HCC cell lines growth in a concentration- and time-dependent manner. Taccaoside arrested cell cycle in the G2/M phase and induced caspase-dependent apoptosis. Western blotting indicated that taccaoside upregulated Bax expression and downregulated Bcl-2 expression. PARP cleavage was observed following taccaoside treatment. Conclusions This study showed that taccaoside may inhibit HCC cell proliferation by inducing apoptosis.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Dioscoreaceae/química , Regulação Neoplásica da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Saponinas/farmacologia , Esteroides/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/genética , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Extratos Vegetais/química , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Saponinas/isolamento & purificação , Transdução de Sinais , Esteroides/isolamento & purificação , Proteína X Associada a bcl-2/agonistas , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...