Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 7(10): e2300582, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37391277

RESUMO

Developing clean and renewable energy sources is an important strategy to reduce carbon emission and achieve carbon neutrality. As one of the most promising clean energy sources, large-scale, and efficient utilization of ocean blue energy remains a challenging problem to be solved. In this work, a hyperelastic network of wheel-structured triboelectric nanogenerators (WS-TENGs) is demonstrated to efficiently harvest low-frequency and small-amplitude wave energy. Different from traditional designs of smooth shell, the external blades on the TENG allow tighter interaction between the wave and the device, which can roll on the water surface like a wheel, continuously agitating internal TENGs. Moreover, the hyperelastic networking structure can stretch and shrink like a spring with stored wave energy, further intensifying the roll of the device, and connecting the WS-TENGs to form a large-scale network. Multiple driving modes with synergistic effects can be realized under wave and wind excitations. Self-powered systems are fabricated based on the WS-TENG network, showing the capability of the device in real wave environment. The work provides a new driving paradigm that can further enhance the energy harvesting capability toward large-scale blue energy utilization based on TENGs.

2.
Front Vet Sci ; 10: 1185191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377951

RESUMO

The purpose of this study is to reveal the effects of different particle sizes of rice straw on the rumen protozoa count, nutrient disappearance rate, rumen fermentation, and microbial community in a rumen simulation technique (RUSITEC) system. In this experiment, a single-factor random trial design was adopted. According to the different particle sizes of rice straw, there were three treatments with three replies in each treatment. Three kinds of goat total mixed ration (TMR), with the same nutrients were used to carry out a 10 days in vitro fermentation experiment using the rumen simulation system developed by Hunan Agricultural University, including 6 days the pretrial period and 4 days formal period. This study found that the organic matter disappearance rate, concentrations of total volatile fatty acids (VFAs), acetate, propionate, and iso-butyrate were greatest in the 4 mm group (p < 0.05). There were no significant differences in the alpha diversity, among the three groups (p > 0.05). The relative abundance of Treponema and Ruminococcus of the 2 mm group increased; the relative abundance of Butyrivibrio and Prevotella in samples increased in the 4 mm group. In addition, the results of correlation analysis showed that Prevotella and Ruminococcus was positively correlated with butyrate, ammonia-N, dOM and d ADF (p < 0.05) and negatively correlated with valerate (p < 0.05); Oscillospira was positively correlated with valerate (p < 0.01) and negatively correlated with propionate, butyrate, ammonia-N, dOM and dADF (p < 0.05). The present results imply that compared to the other groups, rice straw particle size of 4 mm may improve the disappearance rate of nutrients and promote the production of volatile fatty acids by regulating ruminal microorganisms.

3.
Water Res ; 226: 119242, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257156

RESUMO

Under the limitation of the carrier yield and mobility of semiconductor photocatalysts and the reaction domain, it seems that the photocatalytic efficiency cannot be greatly improved. Here, an efficient contact-electro-catalysis (CEC) system based on droplet triboelectric nanogenerator (TENG) is developed. Instead of using traditional semiconductor catalysts, the electric charge transferred during the electrification process of the contact between water droplets and polytetrafluoroethylene (PTFE) is used to participate in catalysis, and the output electrical signal can also monitor the degree of catalysis. The important role of light in the circulation of this CEC system is studied and discussed for the first time. It is proved that the contact electrification at the liquid-solid interface is accompanied by the generation of a large number of strong oxidizing radicals. The efficient transport of charge carriers driven by mechanical force and the active oxygen species distributed in the whole domain greatly improve the degradation rate of dyes. The experimental data show that the degradation efficiency of crystal violet (CV) reaches 90% within 38 s, and the rate constant k is as high as 3.7 min-1. This is a breakthrough in the field of catalysis.

4.
ACS Appl Mater Interfaces ; 12(7): 8288-8295, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31975581

RESUMO

In complex environments, there are often toxic and harmful conditions, and so self-powered sensors that use wireless access have a huge advantage. However, there is still a risk of short circuit for self-powered sensors in harsh environments. A single-electrode self-powered sensor was designed, which can be used to monitor body movements such as walking and running, as well as monitoring the motion of some mechanical devices, such as peristaltic pumps, door, and window switches. By using a threshold delay algorithm, this self-powered sensor can be connected to the phone to warn the phone user to check for theft or illegal intrusion when the door and window are opened. Further research shows that the single-electrode configuration can avoid the short-circuit behavior caused by device damage so that the self-powered sensor can still work even if it is pierced. Therefore, the wireless single-electrode self-powered sensor system has better reliability and is more applicable to harsh environments.

5.
Bioresour Technol ; 247: 434-442, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28965074

RESUMO

MFC was studied using young and old landfill leachate substrate to remove pollutants and produce renewable energy coupled with study of anodic microbiomes. The power output of 96.8mWm-2 with COD removal of 90.0±1.2% was achieved at 60% young leachate in batch mode, which decreased to 75mWm-2 having 55.5% COD abatement in continuous mode employing 100% young leachate. Power production using simulated wastewater without organic source proved that ammonium could also serve as fuel in MFC. The high ammonium dosage increased the overall system performance but beyond a certain limit, the inhibitory effect intensified. Nitrogen removal (66.0±3.3% NH4+-N and 86.0±0.1% NO2--N) occurred obeying different removal pathways. Sequencing analyses revealed that anammox bacteria (2%), denitrifying bacteria (5%) and electrogenic bacteria (15%) were in abundance of the microbial community in the anode. This technology can be promising for leachate treatment and power production however certain constraints still exist in pilot scale experiments.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Químicos da Água , Reatores Biológicos , Eletrodos , Microbiota , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...