Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1323674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076462

RESUMO

Background: Alzheimer's disease (AD), characterized by a severe decline in cognitive function, significantly impacts patients' quality of life. Traditional Chinese Medicine (TCM) presents notable advantages in AD treatment, closely linked to its regulation of intestinal flora. Nevertheless, a comprehensive exploration of the precise role of intestinal flora in AD remains lacking. Methods: We induced an AD model through bilateral intracerebroventricular injection of streptozotocin in rats. We divided 36 rats randomly into 6 groups: sham-operated, model, Danggui Shaoyao San (DSS), and 3 DSS decomposed recipes groups. Cognitive abilities were assessed using water maze and open field experiments. Nissl staining examined hippocampal neuron integrity. Western blot analysis determined synaptoprotein expression. Additionally, 16S rDNA high-throughput sequencing analyzed intestinal flora composition. Results: DSS and its decomposed recipe groups demonstrated improved learning and memory in rats (P<0.01). The open field test indicated increased central zone residence time and locomotor activity distance in these groups (P<0.05). Furthermore, the DSS and decomposed recipe groups exhibited reduced hippocampal neuronal damage and increased expression levels of synapsin I (P<0.05) and PSD95 (P<0.01) proteins. Alpha and Beta diversity analyses showed that the intestinal flora species richness and diversity in the DSS and decomposed recipe groups were similar to those in the sham-operated group, signifying a significant restorative effect (P<0.05). Conclusion: The combination of DSS and its decomposed recipes can reduce the abundance of harmful gut microbiota, leading to improvements in cognitive and learning abilities.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Microbioma Gastrointestinal , Humanos , Ratos , Animais , Qualidade de Vida , Medicina Tradicional Chinesa
2.
Mater Horiz ; 8(3): 1047-1057, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821335

RESUMO

The capability to accurately monitor electrophysiological signals and instantly provide feedback to users is crucial for wearable healthcare. However, commercial gel electrodes suffer from drying out and irritation on skin with time, severely affecting signal quality for practical use. Toward a gel-free electrophysiology, epidermal electrodes that can accurately detect biosignals and simultaneously achieve the multifunctional properties of on-skin electronics needs are highly desirable. In this work, inspired by Lamellibranchia, which can adhere tightly to various surfaces using their extensible, adhesive and self-healing byssal threads, we developed a gel-free epidermal electrode to acquire high-quality electrophysiological signals based on a novel polymer substrate design. This polymer (STAR) features extreme stretchability (>2300% strain), high transparency (>90% transmittance at λ = 550 nm), gentle adhesion (adhesion strengths: tens of kPa), and rapid self-healing ability (95% healing efficiency in 10 min). Combined with silver nanowires as conductors, STAR was employed as a self-healing, stretchable and adhesive epidermal electrode for electrophysiological signal recording, showing a signal-to-noise ratio (SNR) even higher than that of commercial electrodes, and being able to control an artificial limb as an intermediate for human-machine interface. We believe our Lamellibranchia inspired STAR will pave a new way to design multifunctional polymers for epidermal electronics, accelerating the development of emerging wearable healthcare.


Assuntos
Epiderme , Nanofios , Eletrofisiologia Cardíaca , Eletrodos , Humanos , Polímeros
3.
ACS Appl Mater Interfaces ; 12(50): 56361-56371, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33270412

RESUMO

Epidermal electronics is regarded as the next-generation technology, and graphene is a promising electrode, which is a key building block of such devices. However, graphene has a tendency to crack at small strains with a rapidly increased resistance upon stretching. Here, to enable graphene applicable in epidermal electronics, we designed a novel graphene structure that is molybdenum chloride (MoCl5)-intercalated few-layer graphene (Mo-FLG) fabricated in a confined environment. In the case of bilayer graphene (BLG), MoCl5-intercalated bilayer graphene (Mo-BLG) exhibited a low sheet resistance of 40 Ω/square (sq) at a transmittance of 80%. Due to the self-barrier doping effect, the sheet resistance increased to only 60 Ω/sq after exposing to the atmosphere over 1 month. Transferred onto elastomer substrates, Mo-BLG can work as an electrode up to 80% strain and maintain a high conductivity that is durable over 2000 cycles at 30% strain. This mechano-electrostability is attributed to the special intercalated structure where the intercalated dopants act as lubricants to weaken the layer-layer interaction and allow a certain degree of sliding, as well as electrical crack-connectors to bridge the cracked domains at a high strain. Mo-BLG can be applied as epidermal electrodes to monitor electrophysiological signals such as electrocardiogram (ECG), electrooculogram (EOG), electroencephalography (EEG), and surface electromyogram (sEMG) with high signal-to-noise ratios (SNRs) comparable to commercial Ag/AgCl electrode. This is the first demonstration of epidermal electrodes based on intercalation-doped graphene applied in health monitoring, shedding light on the future development of graphene-based epidermal electronics.


Assuntos
Eletrocardiografia/instrumentação , Eletroencefalografia/instrumentação , Eletromiografia/instrumentação , Grafite/química , Cloretos/química , Elastômeros/química , Condutividade Elétrica , Eletrodos , Epiderme/fisiologia , Proteínas Filagrinas , Humanos , Molibdênio/química , Razão Sinal-Ruído
4.
J Phys Chem Lett ; 11(4): 1570-1577, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32013437

RESUMO

Because of its unique electronic band structure, molybdenum disulfide (MoS2) has been regarded as a star semiconducting material. However, direct growth of continuous and high-quality MoS2 films on SiO2/Si substrates is still very challenging. Here, we report a facile chemical vapor deposition (CVD) method based on synergistic modulation of precursor and Na2SO4 catalysis, realizing the centimeter scale growth of a continuous MoS2 film on SiO2/Si substrates. The as-grown MoS2 film had an excellent spatial homogeneity and crystal quality, with an edge length of the composite domain as large as 632 µm. Both experimental and theoretical results proved that Na tended to bond with SiO2 substrates rather than to interfere with as-grown MoS2. Thus, they showed decent and uniform electrical performance, with electron mobilities as high as 5.9 cm2 V-1 s-1. We believe our method will pave a new way for MoS2 toward real application in modern electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...