Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 2): 131721, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649079

RESUMO

Interferon (IFN) alpha/beta receptor 1 (IFNAR1) is indispensable for antiviral responses and the immune regulation. Dysregulation of the IFNAR1-mediaetd signaling pathways leads to deleterious autoimmune diseases such as systemic lupus erythematosus (SLE). QX006N, a humanized therapeutic monoclonal antibody, specifically targets human IFNAR1 and is in the clinical trial phase for treating SLE, but the molecular mechanism underlying the QX006N-mediated recognition of IFNAR1 remains unclear. Here, we report the high neutralization activities of QX006N against IFNAR1-mediated signal transduction. Meanwhile, we determine the structures of the fragment antigen-binding domain (Fab) of QX006N (QX006N-Fab) and QX006N-Fab in complex with the subdomains 1-3 of IFNAR1 (IFNAR1-SD123) at 2.87 Å and 2.68 Å resolutions, respectively. In the structure of the QX006N-Fab/IFNAR1-SD123 complex, QX006N-Fab only recognizes the SD3 subdomain of IFNAR1 by the hydrophobic, hydrogen-bonding and electrostatic interactions. Compared with the structure of the IFN/IFNAR1/IFNAR2 complex, the binding of QX006N-Fab to IFNAR1-SD3 blocks its association with IFN due to steric hindrance, which inhibits the IFN/IFNAR1/IFNAR2 complex formation for signal transduction. The results of this study provide the structural evidence for the specific targeting of IFNAR1 by the therapeutic antibody QX006N and pave the way for the rational design of antibody drugs to combat IFNAR1-related autoimmune diseases.


Assuntos
Anticorpos Monoclonais Humanizados , Lúpus Eritematoso Sistêmico , Receptor de Interferon alfa e beta , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/química , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Humanos , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Ligação Proteica , Modelos Moleculares , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
2.
Anal Chem ; 94(4): 1974-1982, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044162

RESUMO

Antibody-antigen (Ab-Ag) interactions are canonically described by a model that exclusively accommodates noninteraction (0) or reproducible interaction (RI) states, yet this model is inadequate to explain often-encountered nonreproducible signals. Here, by monitoring diverse experimental systems using a peptide-protein hybrid microarray, we observed that Ab-probe interactions comprise a substantial proportion of nonreproducible antibody-based results. This enabled our discovery and capacity to reliably identify nonreproducible Ab-probe interactions (NRIs), as well as our development of a powerful explanatory model ("0-NRI-RI-Hook four-state model") that is mAb concentration-dependent, regardless of specificity, which ultimately shows that both nonspecific interactions and NRIs are not predictable yet certain to happen. Our discoveries challenge the centrality of Ab-Ag interaction specificity data in serology and immunology.


Assuntos
Anticorpos , Antígenos , Especificidade de Anticorpos , Peptídeos
3.
Protein Expr Purif ; 187: 105950, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34363980

RESUMO

Interleukin-17A (IL-17A) produced by Th17 cells, contributes to the pathogenesis of various autoimmune diseases by stimulating the release of cytokines and chemokines and its regulation. Anti-IL-17A antibody which blocks the function of IL-17A has been proved to be an effective treatment of autoimmune disease. The aim of our study was to generate a potential humanized anti-IL-17A therapeutic monoclonal antibody (mAb) through a comprehensive panel of in vitro and in vivo biological activity studies, as well as physicochemical characterization. HZD37-5, a humanized monoclonal antibody specifically recognizing N78 loci of IL-17A, binds to human and rhesus monkeys, blocks IL-17 induced signal transduction and the release of IL-6, IL-8, CXCL-1 and G-GSF. In an in vivo efficacy mouse model, HZD37-5 significantly inhibited human IL-17A induced-keratinocyte chemoattractant (KC) secretion in a dose-dependent manner. The pharmacokinetics (PK) study result of HZD37-5 in rhesus monkeys indicated that HZD37-5 had favorable PK characteristics with limited distribution (78.0-78.8 ml/kg), slow elimination (5.00-6.45 ml/day/kg), long half-life (9.1-10.7 days) and high bioavailability (103%) following a single IV or SC dose at 1.5 mg/kg. These findings provided a comprehensive preclinical characterization of HZD37-5 and supported that it may be developed as a potential therapeutic for the treatment of autoimmune diseases, including psoriasis, psoriatic arthritis, axial spondyloarthritis, etc.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Doenças Autoimunes/tratamento farmacológico , Interleucina-17/imunologia , Animais , Anticorpos Monoclonais Humanizados/imunologia , Quimiocina CXCL1/imunologia , Fatores Quimiotáticos/imunologia , Relação Dose-Resposta a Droga , Humanos , Interleucina-6/imunologia , Interleucina-8/imunologia , Queratinócitos/imunologia , Macaca mulatta , Camundongos , Coelhos , Transdução de Sinais
4.
Biochem Biophys Res Commun ; 311(2): 495-500, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-14592443

RESUMO

omega-Conotoxin MVIIA (CTX MVIIA) is a potent and selective blocker of the N-type voltage-sensitive calcium channel in neurons. Its analgesic and neuroprotective effects may prove useful in treatment of severe pains and ischemia. In this paper, we report that a fusion form of CTX MVIIA with thioredoxin (Trx) has analgesic function. The DNA fragments were chemically synthesized and ligated to form the DNA sequence encoding CTX MVIIA. The synthetic gene was then cloned into the expression vector pET-32a(+) and the fusion protein Trx-CTX MVIIA containing 6x His-tag was purified by one-step metal chelated affinity chromatography (MCAC). The purity of final product was over 95% determined by HPLC and the yield of the fusion protein was approximately 40 mg/L. The analgesic function was detected by using mouse hot-plate assay. After intracranially administering fusion protein with the dose of 0.6 mg/kg, marked analgesia was observed. The analgesic effects (elevated pain thresholds) were dose-dependent and the biological half-life of the fusion toxin was approximately 1.6 h.


Assuntos
Escherichia coli/metabolismo , Limiar da Dor/efeitos dos fármacos , Tiorredoxinas/biossíntese , Tiorredoxinas/farmacologia , ômega-Conotoxinas/biossíntese , ômega-Conotoxinas/farmacologia , Analgésicos , Animais , Comportamento Animal/efeitos dos fármacos , Escherichia coli/genética , Camundongos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/farmacologia , Tiorredoxinas/genética , ômega-Conotoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...