Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother ; 33(8): 789-97, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20842058

RESUMO

An agonistic antibody DTA-1, to glucocorticoid-induced TNFR-related protein (GITR), induces T-cell activation and antitumor immunity. CD4(+) effector T cells are essential in initiating GITR-induced immune activation, and the sequentially activated cytolytic CD8(+) T cells are sufficient to induce tumor rejection. Administration of DTA-1 to a tumor-bearing mouse also induces B-cell activation illustrated by CD69 expression. Substantial evidence suggests that resting B cells are tumor promoting, which has prompted the idea of B-cell depletion by Rituximab, to be combined with other agents in the clinic to augment antitumor response. In this study, we have found that mature B cells are needed for the mechanism of anti-GITR agonist to kill tumors. The treatment of GITR agonist induces profound B-cell activation, differentiation, and antibody production. In a mature B-cell-deficient mouse (JHD), DTA-1 fails to induce tumor regression with a reduced early activation of CD4(+) and CD8(+) T cells. B-cell deficiency disables the capability of the DTA-1 in generating cytolytic CD8(+) T cells and significantly reduces the cytokine production in tumor bearing mice. The tumor-killing activities of DTA-1 are still present albeit reduced in the CD40(-/-) mice, in which IgG production is impaired. We have also shown that the dependence on B cells to kill tumors differentiates GITR costimulation from CTLA4 blockade and OX40 agonism in tumor immunotherapy. The findings underscore the reciprocal T-cell-B-cell interaction to enhance antitumor immunity upon GITR costimulation. The results provide the insight that attenuating B-cell functions may not be beneficial in cancer immunotherapy based on GITR agonism.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Linfócitos B/metabolismo , Neoplasias Colorretais/imunologia , Imunoterapia , Linfócitos T/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Formação de Anticorpos/genética , Linfócitos B/imunologia , Linfócitos B/patologia , Antígenos CD40/genética , Comunicação Celular , Diferenciação Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Citotoxicidade Imunológica/genética , Feminino , Proteína Relacionada a TNFR Induzida por Glucocorticoide , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de Fator de Crescimento Neural/agonistas , Receptores de Fator de Crescimento Neural/imunologia , Receptores do Fator de Necrose Tumoral/agonistas , Receptores do Fator de Necrose Tumoral/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia
2.
Mol Cell ; 32(3): 325-36, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-18995831

RESUMO

DNA2, a helicase/nuclease family member, plays versatile roles in processing DNA intermediates during DNA replication and repair. Yeast Dna2 (yDna2) is essential in RNA primer removal during nuclear DNA replication and is important in repairing UV damage, base damage, and double-strand breaks. Our data demonstrate that, surprisingly, human DNA2 (hDNA2) does not localize to nuclei, as it lacks a nuclear localization signal equivalent to that present in yDna2. Instead, hDNA2 migrates to the mitochondria, interacts with mitochondrial DNA polymerase gamma, and significantly stimulates polymerase activity. We further demonstrate that hDNA2 and flap endonuclease 1 synergistically process intermediate 5' flap structures occurring in DNA replication and long-patch base excision repair (LP-BER) in mitochondria. Depletion of hDNA2 from a mitochondrial extract reduces its efficiency in RNA primer removal and LP-BER. Taken together, our studies illustrate an evolutionarily diversified role of hDNA2 in mitochondrial DNA replication and repair in a mammalian system.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA , Replicação do DNA , Adenosina Trifosfatases/metabolismo , Catálise , Núcleo Celular/enzimologia , Citoplasma/enzimologia , Desoxirribonucleases/metabolismo , Endonucleases Flap/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Mitocôndrias/enzimologia , Biossíntese de Proteínas
3.
Nat Med ; 13(7): 812-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17589521

RESUMO

Functional deficiency of the FEN1 gene has been suggested to cause genomic instability and cancer predisposition. We have identified a group of FEN1 mutations in human cancer specimens. Most of these mutations abrogated two of three nuclease activities of flap endonuclease 1 (FEN1). To demonstrate the etiological significance of these somatic mutations, we inbred a mouse line harboring the E160D mutation representing mutations identified in human cancers. Selective elimination of nuclease activities led to frequent spontaneous mutations and accumulation of incompletely digested DNA fragments in apoptotic cells. The mutant mice were predisposed to autoimmunity, chronic inflammation and cancers. The mutator phenotype results in the initiation of cancer, whereas chronic inflammation promotes the cancer progression. The current work exemplifies the approach of studying the mechanisms of individual polymorphisms and somatic mutations in cancer development, and may serve as a reference in developing new therapeutic regimens through the suppression of inflammatory responses.


Assuntos
Doenças Autoimunes/genética , Endonucleases Flap/genética , Inflamação/genética , Neoplasias/genética , Animais , Apoptose , Doença Crônica , Fragmentação do DNA , Reparo do DNA , Humanos , Camundongos , Mutação , Neoplasias/metabolismo
4.
Mol Cell Biol ; 27(8): 3176-86, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17283043

RESUMO

The interaction between flap endonuclease 1 (FEN-1) and proliferation cell nuclear antigen (PCNA) is critical for faithful and efficient Okazaki fragment maturation. In a living cell, this interaction is probably important for PCNA to load FEN-1 to the replication fork, to coordinate the sequential functions of FEN-1 and other enzymes, and to stimulate its enzyme activity. The FEN-1/PCNA interaction is mediated by the motif (337)QGRLDDFFK(345) of FEN-1, such that an F343AF344A (FFAA) mutant cannot bind to PCNA but retains its nuclease activities. To determine the physiological roles of the FEN-1/PCNA interaction in a mammalian system, we knocked the FFAA Fen1 mutation into the Fen1 gene locus of mice. FFAA/FFAA mouse embryo fibroblasts underwent DNA replication and division at a slower pace, and FFAA/FFAA mutant embryos displayed significant defects in growth and development, particularly in the lung and blood systems. All newborn FFAA mutant pups died at birth, likely due to pulmonary hypoplasia and pancytopenia. Collectively, our data demonstrate the importance of the FEN-1/PCNA complex in DNA replication and in the embryonic development of mice.


Assuntos
Replicação do DNA , Endonucleases Flap/metabolismo , Pulmão/anormalidades , Pancitopenia/congênito , Antígeno Nuclear de Célula em Proliferação/metabolismo , Natimorto , Animais , Animais Recém-Nascidos , Sequência de Bases , Proliferação de Células , Análise Mutacional de DNA , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Fibroblastos/citologia , Fibroblastos/metabolismo , Endonucleases Flap/genética , Homozigoto , Pulmão/embriologia , Pulmão/enzimologia , Pulmão/patologia , Camundongos , Camundongos Mutantes , Dados de Sequência Molecular , Mutação/genética , Pancitopenia/enzimologia , Pancitopenia/patologia , Ligação Proteica , Transporte Proteico
5.
J Biol Chem ; 282(6): 3465-77, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17138563

RESUMO

There is much evidence to indicate that FEN-1 efficiently cleaves single-stranded DNA flaps but is unable to process double-stranded flaps or flaps adopting secondary structures. However, the absence of Fen1 in yeast results in a significant increase in trinucleotide repeat (TNR) expansion. There are then two possibilities. One is that TNRs do not always form stable secondary structures or that FEN-1 has an alternative approach to resolve the secondary structures. In the present study, we test the hypothesis that concerted action of exonuclease and gap-dependent endonuclease activities of FEN-1 play a role in the resolution of secondary structures formed by (CTG)n and (GAA)n repeats. Employing a yeast FEN-1 mutant, E176A, which is deficient in exonuclease (EXO) and gap endonuclease (GEN) activities but retains almost all of its flap endonuclease (FEN) activity, we show severe defects in the cleavage of various TNR intermediate substrates. Precise knock-in of this point mutation causes an increase in both the expansion and fragility of a (CTG)n tract in vivo. Taken together, our biochemical and genetic analyses suggest that although FEN activity is important for single-stranded flap processing, EXO and GEN activities may contribute to the resolution of structured flaps. A model is presented to explain how the concerted action of EXO and GEN activities may contribute to resolving structured flaps, thereby preventing their expansion in the genome.


Assuntos
DNA Fúngico/antagonistas & inibidores , DNA/biossíntese , Exodesoxirribonucleases/fisiologia , Endonucleases Flap/química , Endonucleases Flap/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Conformação de Ácido Nucleico , Repetições de Trinucleotídeos , Alanina/genética , DNA/química , DNA Fúngico/biossíntese , DNA Fúngico/química , Exodesoxirribonucleases/deficiência , Exodesoxirribonucleases/genética , Endonucleases Flap/antagonistas & inibidores , Endonucleases Flap/biossíntese , Endonucleases Flap/deficiência , Endonucleases Flap/genética , Ácido Glutâmico/genética , Mutagênese Sítio-Dirigida , Ácidos Nucleicos Heteroduplexes/biossíntese , Ácidos Nucleicos Heteroduplexes/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato/genética , Repetições de Trinucleotídeos/genética
6.
Nucleic Acids Res ; 34(6): 1772-84, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16582103

RESUMO

Flap endonuclease-1 (FEN-1) is a structure-specific nuclease best known for its involvement in RNA primer removal and long-patch base excision repair. This enzyme is known to possess 5'-flap endo- (FEN) and 5'-3' exo- (EXO) nuclease activities. Recently, FEN-1 has been reported to also possess a gap endonuclease (GEN) activity, which is possibly involved in apoptotic DNA fragmentation and the resolution of stalled DNA replication forks. In the current study, we compare the kinetics of these activities to shed light on the aspects of DNA structure and FEN-1 DNA-binding elements that affect substrate cleavage. By using DNA binding deficient mutants of FEN-1, we determine that the GEN activity is analogous to FEN activity in that the single-stranded DNA region of DNA substrates interacts with the clamp region of FEN-1. In addition, we show that the C-terminal extension of human FEN-1 likely interacts with the downstream duplex portion of all substrates. Taken together, a substrate-binding model that explains how FEN-1, which has a single active center, can have seemingly different activities is proposed. Furthermore, based on the evidence that GEN activity in complex with WRN protein cleaves hairpin and internal loop substrates, we suggest that the GEN activity may prevent repeat expansions and duplication mutations.


Assuntos
Endonucleases Flap/química , Endonucleases Flap/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , DNA/química , DNA/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Endonucleases Flap/genética , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , RecQ Helicases , Especificidade por Substrato , Helicase da Síndrome de Werner
7.
Exp Cell Res ; 312(8): 1323-34, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16457815

RESUMO

Retinitis pigmentosa (RP) is a genetically heterogeneous disease characterized by degeneration of the retina. Mutations in the RP2 gene are linked to the second most frequent form of X-linked retinitis pigmentosa. RP2 is a plasma membrane-associated protein of unknown function. The N-terminal domain of RP2 shares amino acid sequence similarity to the tubulin-specific chaperone protein co-factor C. The C-terminus consists of a domain with similarity to nucleoside diphosphate kinases (NDKs). Human NDK1, in addition to its role in providing nucleoside triphosphates, has recently been described as a 3' to 5' exonuclease. Here, we show that RP2 is a DNA-binding protein that exhibits exonuclease activity, with a preference for single-stranded or nicked DNA substrates that occur as intermediates of base excision repair pathways. Furthermore, we show that RP2 undergoes re-localization into the nucleus upon treatment of cells with DNA damaging agents inducing oxidative stress, most notably solar simulated light and UVA radiation. The data suggest that RP2 may have previously unrecognized roles as a DNA damage response factor and 3' to 5' exonuclease.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/genética , Exodesoxirribonucleases/metabolismo , Proteínas do Olho/metabolismo , Epitélio Pigmentado Ocular/metabolismo , Retinose Pigmentar/enzimologia , Transporte Ativo do Núcleo Celular/fisiologia , Transporte Ativo do Núcleo Celular/efeitos da radiação , Núcleo Celular/genética , Núcleo Celular/metabolismo , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/efeitos da radiação , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/efeitos da radiação , Proteínas do Olho/genética , Proteínas do Olho/efeitos da radiação , Proteínas de Ligação ao GTP , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Mutação/fisiologia , Mutação/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Epitélio Pigmentado Ocular/citologia , Epitélio Pigmentado Ocular/efeitos da radiação , Transporte Proteico/fisiologia , Transporte Proteico/efeitos da radiação , Retinose Pigmentar/genética , Retinose Pigmentar/fisiopatologia , Raios Ultravioleta
8.
Biochemistry ; 44(48): 15774-86, 2005 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-16313181

RESUMO

Nucleoside diphosphate kinases (NDKs), an evolutionarily conserved family of proteins, synthesize nucleoside triphosphates from nucleoside diphosphates and ATP. Here, we have characterized the kinase activity and DNA processing functions of eight human proteins that contain at least one domain homologous to Escherichia coli NDK. Not all human proteins with NDK-like domains exhibited NDK activity when expressed as recombinant proteins in E. coli. Human NDK1 (NM23-H1) has been reported to have 3' --> 5' exonuclease activity. In addition to human NDK1, we also find that human NDK5, NDK7, and NDK8 contain 3' --> 5' exonuclease activity. Site-directed mutagenesis, competition assays between wild-type and mutant NDK proteins, and NMR studies confirmed that the DNA-binding and 3' --> 5' exonuclease activity of human NDK1 is an intrinsic activity of the protein. Using double-stranded DNA substrates containing modified bases, human NDK1 efficiently excised nucleotides from the single-strand break produced by APE1 or Nth1. When human cells were treated with various DNA-damaging agents, human NDK1 translocated from the cytoplasm to the nucleus. These results suggest that, in addition to maintenance of nucleotide pool balance, the human NDK-like proteins may have previously unrecognized roles in DNA nucleolytic processing.


Assuntos
Exonucleases/metabolismo , Núcleosídeo-Difosfato Quinase/metabolismo , Sequência de Aminoácidos , Núcleo Celular/enzimologia , Escherichia coli/enzimologia , Exonucleases/química , Células HeLa , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Nucleosídeo NM23 Difosfato Quinases , Núcleosídeo-Difosfato Quinase/química , Núcleosídeo-Difosfato Quinase/genética , Núcleosídeo-Difosfato Quinase/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
9.
Bioessays ; 27(7): 717-29, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15954100

RESUMO

Flap EndoNuclease-1 (FEN-1) is a multifunctional and structure-specific nuclease involved in nucleic acid processing pathways. It plays a critical role in maintaining human genome stability through RNA primer removal, long-patch base excision repair and resolution of dinucleotide and trinucleotide repeat secondary structures. In addition to its flap endonuclease (FEN) and nick exonuclease (EXO) activities, a new gap endonuclease (GEN) activity has been characterized. This activity may be important in apoptotic DNA fragmentation and in resolving stalled DNA replication forks. The multiple functions of FEN-1 are regulated via several means, including formation of complexes with different protein partners, nuclear localization in response to cell cycle or DNA damage and post-translational modifications. Its functional deficiency is predicted to cause genetic diseases, including Huntington's disease, myotonic dystrophy and cancers. This review summarizes the knowledge gained through efforts in the past decade to define its structural elements for specific activities and possible pathological consequences of altered functions of this multirole player.


Assuntos
Endonucleases Flap/fisiologia , Genoma , Motivos de Aminoácidos , Animais , Núcleo Celular/metabolismo , DNA/química , Primers do DNA/química , Endonucleases/metabolismo , Exonucleases/metabolismo , Endonucleases Flap/química , Humanos , Modelos Biológicos , Modelos Genéticos , Doenças Musculares/metabolismo , Ácidos Nucleicos/química , Fenótipo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , RNA/química , Relação Estrutura-Atividade
10.
J Biol Chem ; 280(15): 15370-9, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15657035

RESUMO

DNA fragmentation/degradation is an important step for apoptosis. However, in unicellular organisms such as yeast, this process has rarely been investigated. In the current study, we revealed eight apoptotic nuclease candidates in Saccharyomyces cerevisiae, analogous to the Caenorhabditis elegans apoptotic nucleases. One of them is Tat-D. Sequence comparison indicates that Tat-D is conserved across kingdoms, implicating that it is evolutionarily and functionally indispensable. In order to better understand the biochemical and biological functions of Tat-D, we have overexpressed, purified, and characterized the S. cerevisiae Tat-D (scTat-D). Our biochemical assays revealed that scTat-D is an endo-/exonuclease. It incises the double-stranded DNA without obvious specificity via its endonuclease activity and excises the DNA from the 3'- to 5'-end by its exonuclease activity. The enzyme activities are metal-dependent with Mg(2+) as an optimal metal ion and an optimal pH around 5. We have also identified three amino acid residues, His(185), Asp(325), and Glu(327), important for its catalysis. In addition, our study demonstrated that knock-out of TAT-D in S. cerevisiae increases the TUNEL-positive cells and cell survival in response to hydrogen hyperoxide treatment, whereas overexpression of Tat-D facilitates cell death. These results suggest a role of Tat-D in yeast apoptosis.


Assuntos
Apoptose , Endodesoxirribonucleases/fisiologia , Exodesoxirribonucleases/fisiologia , Proteínas Fúngicas/química , Hidrolases/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Sobrevivência Celular , DNA/metabolismo , Fragmentação do DNA , Bases de Dados como Assunto , Endodesoxirribonucleases/biossíntese , Endonucleases/química , Exodesoxirribonucleases/biossíntese , Exonucleases/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Concentração de Íons de Hidrogênio , Marcação In Situ das Extremidades Cortadas , Magnésio/química , Dados de Sequência Molecular , Mutação , Oligonucleotídeos/química , Filogenia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
11.
J Biol Chem ; 279(23): 24394-402, 2004 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-15037610

RESUMO

Flap endonuclease-1 or FEN-1 is a structure-specific and multifunctional nuclease critical for DNA replication, repair, and recombination; however, its interaction with DNA substrates has not been fully understood. In the current study, we have defined the borders of the interaction between the FEN-1 protein and its DNA substrates and identified six clusters of conserved positively charged amino acid residues, which are in direct contact with DNA substrate. To map further the corresponding interactions between FEN-1 residues and DNA substrates, we performed biochemical assays employing a series of flap DNA substrates lacking some structural components and a series of binding-deficient point mutants of FEN-1. It was revealed that Arg(47), Arg(70), and Lys(326)-Arg(327) of FEN-1 interact with the upstream duplex of DNA substrates, whereas Lys(244)-Arg(245) interact with the downstream duplex. This result indicates the orientation of the FEN-1-DNA interaction. Moreover, Arg(70) and Arg(47) were determined to interact with the sites around the 2nd nucleotide (Arg(70)) or the 5th/6th nucleotide (Arg(47)) of the template strand in the upstream duplex portion counting from the nick point of the flap substrate. Together with previously published data and the crystallographic ainformation from the FEN-1.DNA complex that we published recently (Chapados, B. R., Hosfield, D. J., Han, S., Qiu, J., Yelent, B., Shen, B., Tainer, J. A. (2004) Cell 116, 39-50) we are able to propose a reasonable model for how the human FEN-1 protein interacts with its DNA substrates.


Assuntos
DNA/química , Endonucleases Flap/química , Sequência de Bases , Sítios de Ligação , Dicroísmo Circular , Exodesoxirribonucleases/química , Endonucleases Flap/metabolismo , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Recombinação Genética
12.
Cell ; 116(1): 39-50, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14718165

RESUMO

Flap EndoNuclease-1 (FEN-1) and the processivity factor proliferating cell nuclear antigen (PCNA) are central to DNA replication and repair. To clarify the molecular basis of FEN-1 specificity and PCNA activation, we report here structures of FEN-1:DNA and PCNA:FEN-1-peptide complexes, along with fluorescence resonance energy transfer (FRET) and mutational results. FEN-1 binds the unpaired 3' DNA end (3' flap), opens and kinks the DNA, and promotes conformational closing of a flexible helical clamp to facilitate 5' cleavage specificity. Ordering of unstructured C-terminal regions in FEN-1 and PCNA creates an intermolecular beta sheet interface that directly links adjacent PCNA and DNA binding regions of FEN-1 and suggests how PCNA stimulates FEN-1 activity. The DNA and protein conformational changes, composite complex structures, FRET, and mutational results support enzyme-PCNA alignments and a kinked DNA pivot point that appear suitable to coordinate rotary handoffs of kinked DNA intermediates among enzymes localized by the three PCNA binding sites.


Assuntos
Reparo do DNA/genética , Replicação do DNA/genética , Endonucleases Flap/química , Endonucleases Flap/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Archaeoglobus , Sítios de Ligação/fisiologia , Domínio Catalítico/fisiologia , DNA/genética , DNA/metabolismo , Substâncias Macromoleculares , Modelos Moleculares , Conformação Molecular , Antígeno Nuclear de Célula em Proliferação/química , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Saccharomyces cerevisiae , Especificidade por Substrato/fisiologia
13.
DNA Repair (Amst) ; 2(8): 925-40, 2003 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-12893088

RESUMO

Rad2 family nucleases, identified by sequence similarity within their catalytic domains, function in multiple pathways of DNA metabolism. Three members of the Saccharomyces cerevisiae Rad2 family, Rad2, Rad27, and exonuclease 1 (Exo1), exhibit both 5' exonuclease and flap endonuclease activities. Deletion of RAD27 results in defective Okazaki fragment maturation, DNA repair, and subsequent defects in mutation avoidance and chromosomal stability. However, strains lacking Rad27 are viable. The expression profile of EXO1 during the cell cycle is similar to that of RAD27 and other genes encoding proteins that function in DNA replication and repair, suggesting Exo1 may function as a back up nuclease for Rad27 in DNA replication. We show that overexpression of EXO1 suppresses multiple rad27 null mutation-associated phenotypes derived from DNA replication defects, including temperature sensitivity, Okazaki fragment accumulation, the rate of minichromosome loss, and an elevated mutation frequency. While generally similar findings were observed with RAD2, overexpression of RAD2, but not EXO1, suppressed the MMS sensitivity of the rad27 null mutant cells. This suggests that Rad2 can uniquely complement Rad27 in base excision repair (BER). Furthermore, Rad2 and Exo1 complemented the mutator phenotypes and cell cycle defects of rad27 mutant strains to differing extents, suggesting distinct in vivo nucleic acid substrates.


Assuntos
Instabilidade Cromossômica/genética , DNA/genética , Exodesoxirribonucleases/genética , Expressão Gênica , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Primers do DNA , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Endonucleases Flap/genética , Immunoblotting , Microscopia de Fluorescência , Mutação/genética , Plasmídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
14.
Curr Genet ; 41(6): 379-88, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12228807

RESUMO

RNA primer removal from Okazaki fragments during lagging-strand replication and the excision of damaged DNA bases requires the action of structure-specific nucleases, such as the mammalian flap endonuclease 1 (FEN-1). This nuclease contains two conserved motifs enriched with acidic amino acid residues that are important for catalytic function. Similar motifs have been identified in nucleases found in viruses, archebacteria, eubacteria, and in eukaryotes ranging from yeast to humans. Unique among these proteins, the putative FEN-1 homologue in Escherichia coli is contained within the N-terminal region of the DNA polymerase I (PolN). To demonstrate that the cellular functions of FEN-1 reside in PolN, we cloned and expressed the amino terminal domain (323 amino acid residues) of PolI in a Saccharomyces cerevisiae strain lacking the FEN-1 homologue RAD27. Overexpression of PolN suppressed, to varying degrees, phenotypes associated with a rad27 null strain. These include temperature sensitivity, Okazaki fragment processing, a mutator phenotype, a G2/M cell cycle arrest, minichromosome loss, and methyl methane sulfonate sensitivity. We purified Rad27 and PolN proteins in order to determine whether differences in their intrinsic nuclease activities or interaction with proliferating cell nuclear antigen (PCNA) could explain the partial suppression of some phenotypes. We found that the in vitro nuclease activities of Rad27 were more potent than those of PolN and the activity of Rad27, but not PolN, was stimulated by PCNA. We conclude that the N-terminal nuclease domain of E. coli polymerase I encodes a functional homologue of FEN-1.


Assuntos
DNA Polimerase I/farmacologia , Escherichia coli/enzimologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/efeitos dos fármacos , Sequência Conservada , DNA/farmacologia , DNA Polimerase I/química , Replicação do DNA , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Endonucleases Flap , Mutação , Estrutura Terciária de Proteína , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
15.
J Biol Chem ; 277(27): 24659-66, 2002 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-11986308

RESUMO

Flap endonuclease-1 (FEN-1) is a critical enzyme for DNA replication and repair. Intensive studies have been carried out on its structure-specific nuclease activities and biological functions in yeast cells. However, its specific interactions with DNA substrates as an initial step of catalysis are not defined. An understanding of the ability of FEN-1 to recognize and bind a flap DNA substrate is critical for the elucidation of its molecular mechanism and for the explanation of possible pathological consequences resulting from its failure to bind DNA. Using human FEN-1 in this study, we identified two positively charged amino acid residues, Arg-47 and Arg-70 in human FEN-1, as candidates responsible for substrate binding. Mutation of the Arg-70 significantly reduced flap endonuclease activity and eliminated exonuclease activity. Mutation or protonation of Arg-47 shifted cleavage sites with flap substrate and significantly reduced the exonuclease activity. We revealed that these alterations are due to the defects in DNA-protein interactions. Although the effect of the single Arg-47 mutation on binding activities is not as severe as R70A, its double mutation with Asp-181 had a synergistic effect. Furthermore the possible interaction sites of these positively charged residues with DNA substrates were discussed based on FEN-1 cleavage patterns using different substrates. Finally data were provided to indicate that the observed negative effects of a high concentration of Mg(2+) on enzymatic activity are probably due to the competition between the arginine residues and metal ions with DNA substrate since mutants were found to be less tolerant.


Assuntos
DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , Primers do DNA , Reparo do DNA , Replicação do DNA , Endodesoxirribonucleases/química , Endonucleases Flap , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...