Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121588, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38941851

RESUMO

There have been notable changes in precipitation patterns on the Loess Plateau (LP) of China in recent decades, and numerous attribution studies have focused on sea surface temperature anomalies and atmospheric circulation changes induced by aerosols and greenhouse gases emission. However, the influences of global land use and land cover change (LULCC) as an important forcing factor in the climate system on regional precipitation remains poorly understood. In this study, we quantified the impacts of LULCC on precipitation and the water vapor budget in the LP region, utilizing data from LULCC forcing experiments conducted by the sixth phase of the Coupled Model Intercomparison Project (CMIP6). Although global LULCC forcing exerted a negative effect on long-term mean precipitation on the LP region from 1850 to 2014, the different response characteristics were detected during different time periods. The global LULCC caused a decrease of 14 mm in annual precipitation during the period of 1850-1960. Conversely, from 1961 to 2014, it led to an increase of 6.4 mm, which is largely attributed to the enhanced water vapor transport along the southern boundary and westerly belt of the LP region. Moreover, from the perspective of the net water vapor balance of the entire LP, although LULCC caused net water vapor export during both periods 1850-1960 and 1961-2014, the export during the latter period (0.20 × 104 kg s-1) was smaller than that during the former period (0.28 × 104 kg s-1), indicating that the global expansion of grassland and cropland, along with the continuous rise in the leaf area index from 1961 to 2014, contributed to retaining more water vapor within the LP, which in turn was more favorable for precipitation. These findings provide valuable insights into the reasons behind precipitation variations in the LP region, emphasizing that global vegetation restoration and greening play a significant role in improving precipitation in ecologically fragile areas.

2.
Sci Total Environ ; 799: 149247, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358741

RESUMO

Soil carbon (SC) is a key component of the carbon cycle and plays an important role in climate change; however, quantitatively assessing SC dynamics at the regional scale remains challenging. Earth system model (ESM) that considers multiple environmental factors and spatial heterogeneity has become a powerful tool to explore carbon cycle-climate feedbacks, although the performance of the ESM is diverse and highly uncertain. Thus, identifying reliable ESMs is a prerequisite for better understanding the response of SC dynamics to human activity and climate change. The 16 ESMs that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) were employed to evaluate the skill performance of SC density simulation by comparison with reference data from the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS). Although ESMs generally reflect spatial patterns with lower SC in northwest China and higher SC in southeast China, 11 of 16 ESMs underestimated the SC in China, and 5 of 16 ESMs overestimated the SC density as most ESMs had large discrepancies in capturing the SC density in the northern high latitudes of China and the Qinghai-Tibet Plateau. According to a series of model performance statistics, SC simulated by Institute Pierre Simon Laplace (IPSL) Coupled Model had a close spatial pattern with IGBP-DIS and showed higher skills for SC predictions in China relative to other CMIP5 ESMs. The multimodel ensemble average obtained by IPSL family ESMs showed that SC density exhibited increasing trends under both the RCP4.5 scenario and RCP8.5 scenario. The SC density increased slowly under RCP8.5 compared with that under RCP4.5 and even displayed a decreasing trend in the late 21st century. The findings of this study can provide a reference for identifying the shortcomings of SC predictions in China and guide SC parameterization improvement in ESMs.


Assuntos
Carbono , Solo , Ciclo do Carbono , China , Mudança Climática , Humanos
3.
Sci Total Environ ; 698: 134261, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31783458

RESUMO

Sediment in rivers is the dominant material source for ecosystems in lower reaches and estuaries, and it is undergoing large variations globally in recent decades. Though we have knowledge that human activities are greatly affecting land surface ecosystem processes and functions, the relationships between sediment transport regime and the intensifying human activities, are still poorly understood. This study was to investigate the changes of sediment transport regime due to the large-scale ecological restoration in the Middle Yellow River Basin (MYRB). In this study, we examined the change of the sediment rating curves using daily sediment load and streamflow data from 30 stations during time periods including pre- and post-ecological restoration in this region. We found the pair-relationship of the rating parameters (coefficient and exponent), denoted as coefficient-exponent pair-line, is a critical indicator that can detect the shift of sediment transport regime due to disturbed land surface conditions, though the changed hydrometeorological condition may just influence the absolute values of the rating parameters. Our analysis indicates there was a significant and interesting change of the sediment transport regime in the MYRB characterized by the consistent shift of the coefficient-exponent pair-line, together with an increasing exponent and a decreasing coefficient. This changed sediment transport regime can tell that sediment delivery would become lower for normal discharge conditions but potentially higher for extreme discharge conditions, and this phenomenon seems more distinct in relatively smaller watersheds, suggesting a higher risk of the potential high sediment delivery for extreme rainfall conditions especially for small watersheds. Our study would be informative and valuable to decision makers for sustainable watershed management in the MYRB when considering the changed sediment delivery.

4.
Sci Total Environ ; 697: 134064, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31476506

RESUMO

The water and carbon cycles are tightly linked and play a key role in the material and energy flows between terrestrial ecosystems and the atmosphere, but the interactions of water and carbon cycles are not quite clear. The global climate change and intensive human activities could also complicate the water and carbon coupling processes. Better understanding the coupled water-carbon cycles and their spatiotemporal evolution can inform management and decision-making efforts regarding carbon uptake, food production, water resources, and climate change. The integration of remote sensing and numeric modeling is an attractive approach to address the challenge. Remote sensing can provide extensive data for a number of variables at regional scale and support models, whereas process-based modeling can facilitate investigating the processes that remote sensing cannot well handle (e.g., below-ground and lateral material movement) and backcast/forecast the impacts of environmental change. Over the past twenty years, an increasing number of studies using a variety of remote sensing products together with numeric models have examined the water-carbon interactions. This article reviewed the methodologies for integrating remote sensing data into these models and the modeling of water-carbon coupling processes. We first summarized the major remote sensing datasets and models used for studying the coupled water-carbon cycles. We then provided an overview of the methods for integrating remote sensing data into water-carbon models, and discussed their strengths and challenges. We also prospected the development of potential new remote sensing datasets, modeling methods, and their potential applications in the field of eco-hydrology.

5.
Sci Total Environ ; 577: 267-278, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27829504

RESUMO

Although many studies have been conducted on crop yield in rain-fed agriculture, the possible impacts of climate change on the carbon (C) dynamics of rain-fed rotation systems, particularly their direction and magnitude at the long-term scale, are still poorly understood. In this study, the sensitivity of C dynamics of a typical rotation system to elevated CO2 and changed temperature and precipitation were first tested using the CENTURY model, based on data collected from a 30-year field experiment of a corn-wheat-wheat-millet (CWWM) rotation system in the tableland of the Loess Plateau. The possible responses of crop biomass C and soil organic C (SOC) accumulation were then evaluated under scenarios representing the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicated that elevated CO2 and increased precipitation exerted positive effect on biomass C in CWWM rotation system, while increasing the temperature by 1°C, 2°C and 4°C had negative effects on biomass C due to opposite responses of corn and winter wheat to warming. SOC accumulation was enhanced by increased CO2 concentration and precipitation but impaired by increased temperature. Under future RCP scenarios with dynamic CO2, the biomass C of corn exhibited decrease during the period of 2046-2075 under RCP4.5 and the period of 2016-2075 under RCP8.5 due to reduced precipitation and a warmer climate. In contrast, winter wheat would benefit from increased CO2 and temperature and was projected to have larger biomass C under both RCP scenarios. Although the climate condition had large differences between RCP4.5 and RCP8.5, the projected SOC had similar trends under two scenarios due to CO2 fertilizer effect and precipitation fluctuation. These results implied that crop biomass C and SOC accumulation in a warmer environment are strongly related to precipitation, and increase in field water storage should be emphasized in coping with future climate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...