Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 1078137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518196

RESUMO

Iron as an essential element, is involved in various cellular functions and maintaining cell viability, cancer cell is more dependent on iron than normal cell due to its chief characteristic of hyper-proliferation. Despite that some of the iron chelators exhibited potent and broad antitumor activity, severe systemic toxicities have limited their clinical application. Polyaminoacids, as both drug-delivery platform and therapeutic agents, have attracted great interests owing to their different medical applications and biocompatibility. Herein, we have developed a novel iron nanochelator PL-DFX, which composed of deferasirox and hyperbranched polylysine. PL-DFX has higher cytotoxicity than DFX and this effect can be partially reversed by Fe2+ supplementation. PL-DFX also inhibited migration and invasion of cancer cells, interfere with iron metabolism, induce phase G1/S arrest and depolarize mitochondria membrane potential. Additionally, the anti-tumor potency of PL-DFX was also supported by organoids derived from clinical specimens. In this study, DFX-based iron nanochelator has provided a promising and prospective strategy for cancer therapy via iron metabolism disruption.

2.
Chronic Dis Transl Med ; 5(3): 155-169, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31891127

RESUMO

Current cancer therapies have encountered adverse response due to poor therapeutic efficiency, severe side effects and acquired resistance to multiple drugs. Thus, there are urgent needs for finding new cancer-targeted pharmacological strategies. In this review, we summarized the current understanding with THZ1, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7), which demonstrated promising anti-tumor activity against different cancer types. By introducing the anti-tumor behaviors and the potential targets for different cancers, this review aims to provide more effective approaches to CDK7 inhibitor-based therapeutic agents and deeper insight into the diverse tumor proliferation mechanisms.

3.
Chronic Dis Transl Med ; 5(3): 178-187, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31891129

RESUMO

Colorectal cancer (CRC) is a common malignant tumor that affects people worldwide. Metagenomic analyses have shown an enrichment of Fusobacterium nucleatum (F. nucleatum) in colorectal carcinoma tissue; many studies have indicated that F. nucleatum is closely related to the colorectal carcinogenesis. In this review, we provide the latest information to reveal the related molecular mechanisms. The known virulence factors of F. nucleatum promote adhesion to intestinal epithelial cells via FadA and Fap2. Besides, Fap2 also binds to immune cells causing immunosuppression. Furthermore, F. nucleatum recruits tumor-infiltrating immune cells, thus yielding a pro-inflammatory microenvironment, which promotes colorectal neoplasia progression. F. nucleatum was also found to potentiate CRC development through toll-like receptor 2 (TLR2)/toll-like receptor 4 (TLR4) signaling and microRNA (miRNA)-21 expression. In addition, F. nucleatum increases CRC recurrence along with chemoresistance by mediating a molecular network of miRNA-18a*, miRNA-4802, and autophagy components. Moreover, viable F. nucleatum was detected in mouse xenografts of human primary colorectal adenocarcinomas through successive passages. These findings indicated that an increased number of F. nucleatum in the tissues is a biomarker for the diagnosis and prognosis of CRC, and the underlying molecular mechanism can probably provide a potential intervention treatment strategy for patients with F. nucleatum-associated CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...