Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 4074, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858459

RESUMO

As more and more protein biotherapeutics enter the drug discovery pipelines, there is an increasing interest in tools for mechanistic drug metabolism investigations of biologics in order to identify and prioritize the most promising candidates. Understanding or even predicting the in vivo clearance of biologics and to support translational pharmacokinetic modeling activities is essential, however there is a lack of effective and validated in vitro cellular tools. Although different mechanisms have to be adressed in the context of biologics disposition, the scope is not comparable to the nowadays widely established tools for early characterization of small molecule disposition. Here, we describe a biotransformation study of the fusion protein tetranectin apolipoprotein A1 by cellular systems. The in vivo biotransformation of tetranectin apolipoprotein A1 has been described previously, and the same major biotransformation product could also be detected in vitro, by a targeted and highly sensitive detection method based on chymotrypsin digest. In addition, the protease responsible for the formation of this biotransformation product could be elucidated to be DPP4. To our knowledge, this is one of the first reports of an in vitro biotransformation study by cells of a therapeutic protein.


Assuntos
Apolipoproteína A-I/genética , Biotransformação/genética , Dipeptidil Peptidase 4/química , Lectinas Tipo C/genética , Proteínas Recombinantes de Fusão/genética , Apolipoproteína A-I/química , Quimotripsina/farmacologia , Dipeptidil Peptidase 4/farmacologia , Descoberta de Drogas , Humanos , Lectinas Tipo C/química , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Proteínas Recombinantes de Fusão/química
2.
Xenobiotica ; 46(6): 483-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26405846

RESUMO

1. In recent years, the minipig is increasingly used as a test species in non-clinical assessment of drug candidates. While there is good scientific evidence available concerning cytochrome P450-mediated metabolism in minipig, the knowledge of other metabolic pathways is more limited. 2. The aim of this study was to provide an understanding of when, why, and how drug metabolism in minipig differs from other species commonly used in non-clinical studies. In-house cross-species metabolite profile comparisons in hepatocytes and microsomes of 38 Roche development compounds were retrospectively analyzed to compare the metabolism among minipig, human, rat, dog, monkey, rabbit and mouse. 3. A significant contributor to the elevated metabolism observed for certain compounds in minipig was identified as amide hydrolysis. The hepatic amide hydrolysis activity in minipig was further investigated in subcellular liver fractions and a structure-activity relationship was established. When structural motifs according to the established SAR are excluded, coverage of major human metabolic pathways was shown to be higher in minipig than in dog, and only slightly lower than in cynomolgus monkey. 4. A strategy is presented for early identification of drug compounds which might not be suited to further investigation in minipig due to excessive hydrolytic metabolism.


Assuntos
Amidas/metabolismo , Preparações Farmacêuticas/metabolismo , Amidas/química , Animais , Western Blotting , Carboxilesterase/metabolismo , Celecoxib/metabolismo , Hepatócitos/metabolismo , Humanos , Hidrólise , Fígado/metabolismo , Metaboloma , Microssomos Hepáticos/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade , Frações Subcelulares/metabolismo , Suínos , Porco Miniatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...