Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Phys Med Biol ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39053511

RESUMO

In this study, a deep learning approach utilizing a conditional denoising diffusion probabilistic model (C-DDPM) was developed to create synthetic contrast-enhanced Dual-energy CT (CE-DECT) images from non-contrast single-energy CT (SECT) scans. CE-DECT scans are crucial in producing iodine density maps and delineating targets and organs-at-risk (OAR), which are essential yet often constrained by the limited availability of Dual-energy CT (DECT) scanners during standard CT simulations for radiation therapy planning. To address this challenge, our proposed approach offers a valuable alternative, mitigating the health risks linked to iodinated contrast agents, particularly for those high-risk patients. In this research, imaging data were collected from 130 head-and-neck (HN) cancer patients, who had undergone both non-contrast SECT and CE-DECT scans. The performance of this approach was evaluated using metrics such as Mean Absolute Error (MAE), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR). The evaluation demonstrated promising results, with MAE values of 27.37±3.35 Hounsfield Units (HU) for high-energy CT (H-CT) and 24.57±3.35HU for low-energy CT (L-CT), SSIM values of 0.74±0.22 for H-CT and 0.78±0.22 for L-CT, and PSNR values of 18.51±4.55 decibels (dB) for H-CT and 18.91±4.55 dB for L-CT. These metrics highlight the deep learning model's efficacy and its potential to significantly benefit radiation therapy planning by enabling generation of synthetic contrast DECT, even in facilities that lack DECT scanners. Additionally, it offers a safer alternative imaging solution for patients who are unsuitable for iodine contrast imaging, thereby expanding the reach and effectiveness of advanced imaging in cancer treatment planning. .

2.
Med Phys ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865687

RESUMO

BACKGROUND: Dual-energy computed tomography (DECT) and material decomposition play vital roles in quantitative medical imaging. However, the decomposition process may suffer from significant noise amplification, leading to severely degraded image signal-to-noise ratios (SNRs). While existing iterative algorithms perform noise suppression using different image priors, these heuristic image priors cannot accurately represent the features of the target image manifold. Although deep learning-based decomposition methods have been reported, these methods are in the supervised-learning framework requiring paired data for training, which is not readily available in clinical settings. PURPOSE: This work aims to develop an unsupervised-learning framework with data-measurement consistency for image-domain material decomposition in DECT. METHODS: The proposed framework combines iterative decomposition and deep learning-based image prior in a generative adversarial network (GAN) architecture. In the generator module, a data-fidelity loss is introduced to enforce the measurement consistency in material decomposition. In the discriminator module, the discriminator is trained to differentiate the low-noise material-specific images from the high-noise images. In this scheme, paired images of DECT and ground-truth material-specific images are not required for the model training. Once trained, the generator can perform image-domain material decomposition with noise suppression in a single step. RESULTS: In the simulation studies of head and lung digital phantoms, the proposed method reduced the standard deviation (SD) in decomposed images by 97% and 91% from the values in direct inversion results. It also generated decomposed images with structural similarity index measures (SSIMs) greater than 0.95 against the ground truth. In the clinical head and lung patient studies, the proposed method suppressed the SD by 95% and 93% compared to the decomposed images of matrix inversion. CONCLUSIONS: Since the invention of DECT, noise amplification during material decomposition has been one of the biggest challenges, impeding its quantitative use in clinical practice. The proposed method performs accurate material decomposition with efficient noise suppression. Furthermore, the proposed method is within an unsupervised-learning framework, which does not require paired data for model training and resolves the issue of lack of ground-truth data in clinical scenarios.

3.
Med Phys ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889368

RESUMO

BACKGROUND: Iodine maps, derived from image-processing of contrast-enhanced dual-energy computed tomography (DECT) scans, highlight the differences in tissue iodine intake. It finds multiple applications in radiology, including vascular imaging, pulmonary evaluation, kidney assessment, and cancer diagnosis. In radiation oncology, it can contribute to designing more accurate and personalized treatment plans. However, DECT scanners are not commonly available in radiation therapy centers. Additionally, the use of iodine contrast agents is not suitable for all patients, especially those allergic to iodine agents, posing further limitations to the accessibility of this technology. PURPOSE: The purpose of this work is to generate synthetic iodine map images from non-contrast single-energy CT (SECT) images using conditional denoising diffusion probabilistic model (DDPM). METHODS: One-hundered twenty-six head-and-neck patients' images were retrospectively investigated in this work. Each patient underwent non-contrast SECT and contrast DECT scans. Ground truth iodine maps were generated from contrast DECT scans using commercial software syngo.via installed in the clinic. A conditional DDPM was implemented in this work to synthesize iodine maps. Three-fold cross-validation was conducted, with each iteration selecting the data from 42 patients as the test dataset and the remainder as the training dataset. Pixel-to-pixel generative adversarial network (GAN) and CycleGAN served as reference methods for evaluating the proposed DDPM method. RESULTS: The accuracy of the proposed DDPM was evaluated using three quantitative metrics: mean absolute error (MAE) (1.039 ± 0.345 mg/mL), structural similarity index measure (SSIM) (0.89 ± 0.10) and peak signal-to-noise ratio (PSNR) (25.4 ± 3.5 db) respectively. Compared to the reference methods, the proposed technique showcased superior performance across the evaluated metrics, further validated by the paired two-tailed t-tests. CONCLUSION: The proposed conditional DDPM framework has demonstrated the feasibility of generating synthetic iodine map images from non-contrast SECT images. This method presents a potential clinical application, which is providing accurate iodine contrast map in instances where only non-contrast SECT is accessible.

4.
ArXiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38800650

RESUMO

This study aims to develop a digital twin (DT) framework to enhance adaptive proton stereotactic body radiation therapy (SBRT) for prostate cancer. Prostate SBRT has emerged as a leading option for external beam radiotherapy due to its effectiveness and reduced treatment duration. However, interfractional anatomy variations can impact treatment outcomes. This study seeks to address these uncertainties using DT concept, with the goal of improving treatment quality, potentially revolutionizing prostate radiotherapy to offer personalized treatment solutions. Our study presented a pioneering approach that leverages DT technology to enhance adaptive proton SBRT. The framework improves treatment plans by utilizing patient-specific CTV setup uncertainty, which is usually smaller than conventional clinical setups. This research contributes to the ongoing efforts to enhance the efficiency and efficacy of prostate radiotherapy, with ultimate goals of improving patient outcomes and life quality.

5.
Phys Med Biol ; 69(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38714192

RESUMO

Objective.This study developed an unsupervised motion artifact reduction method for magnetic resonance imaging (MRI) images of patients with brain tumors. The proposed novel design uses multi-parametric multicenter contrast-enhanced T1W (ceT1W) and T2-FLAIR MRI images.Approach.The proposed framework included two generators, two discriminators, and two feature extractor networks. A 3-fold cross-validation was used to train and fine-tune the hyperparameters of the proposed model using 230 brain MRI images with tumors, which were then tested on 148 patients'in-vivodatasets. An ablation was performed to evaluate the model's compartments. Our model was compared with Pix2pix and CycleGAN. Six evaluation metrics were reported, including normalized mean squared error (NMSE), structural similarity index (SSIM), multi-scale-SSIM (MS-SSIM), peak signal-to-noise ratio (PSNR), visual information fidelity (VIF), and multi-scale gradient magnitude similarity deviation (MS-GMSD). Artifact reduction and consistency of tumor regions, image contrast, and sharpness were evaluated by three evaluators using Likert scales and compared with ANOVA and Tukey's HSD tests.Main results.On average, our method outperforms comparative models to remove heavy motion artifacts with the lowest NMSE (18.34±5.07%) and MS-GMSD (0.07 ± 0.03) for heavy motion artifact level. Additionally, our method creates motion-free images with the highest SSIM (0.93 ± 0.04), PSNR (30.63 ± 4.96), and VIF (0.45 ± 0.05) values, along with comparable MS-SSIM (0.96 ± 0.31). Similarly, our method outperformed comparative models in removingin-vivomotion artifacts for different distortion levels except for MS- SSIM and VIF, which have comparable performance with CycleGAN. Moreover, our method had a consistent performance for different artifact levels. For the heavy level of motion artifacts, our method got the highest Likert scores of 2.82 ± 0.52, 1.88 ± 0.71, and 1.02 ± 0.14 (p-values≪0.0001) for our method, CycleGAN, and Pix2pix respectively. Similar trends were also found for other motion artifact levels.Significance.Our proposed unsupervised method was demonstrated to reduce motion artifacts from the ceT1W brain images under a multi-parametric framework.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Movimento , Humanos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagem
6.
Phys Med Biol ; 69(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38744300

RESUMO

Objectives. In this work, we proposed a deep-learning segmentation algorithm for cardiac magnetic resonance imaging to aid in contouring of the left ventricle, right ventricle, and Myocardium (Myo).Approach.We proposed a shifted window multilayer perceptron (Swin-MLP) mixer network which is built upon a 3D U-shaped symmetric encoder-decoder structure. We evaluated our proposed network using public data from 100 individuals. The network performance was quantitatively evaluated using 3D volume similarity between the ground truth contours and the predictions using Dice score coefficient, sensitivity, and precision as well as 2D surface similarity using Hausdorff distance (HD), mean surface distance (MSD) and residual mean square distance (RMSD). We benchmarked the performance against two other current leading edge networks known as Dynamic UNet and Swin-UNetr on the same public dataset.Results.The proposed network achieved the following volume similarity metrics when averaged over three cardiac segments: Dice = 0.952 ± 0.017, precision = 0.948 ± 0.016, sensitivity = 0.956 ± 0.022. The average surface similarities were HD = 1.521 ± 0.121 mm, MSD = 0.266 ± 0.075 mm, and RMSD = 0.668 ± 0.288 mm. The network shows statistically significant improvement in comparison to the Dynamic UNet and Swin-UNetr algorithms for most volumetric and surface metrics withp-value less than 0.05. Overall, the proposed Swin-MLP mixer network demonstrates better or comparable performance than competing methods.Significance.The proposed Swin-MLP mixer network demonstrates more accurate segmentation performance compared to current leading edge methods. This robust method demonstrates the potential to streamline clinical workflows for multiple applications.


Assuntos
Coração , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Coração/diagnóstico por imagem , Redes Neurais de Computação , Aprendizado Profundo , Algoritmos
8.
ArXiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38745700

RESUMO

Magnetic resonance imaging (MRI) has revolutionized medical imaging, providing a non-invasive and highly detailed look into the human body. However, the long acquisition times of MRI present challenges, causing patient discomfort, motion artifacts, and limiting real-time applications. To address these challenges, researchers are exploring various techniques to reduce acquisition time and improve the overall efficiency of MRI. One such technique is compressed sensing (CS), which reduces data acquisition by leveraging image sparsity in transformed spaces. In recent years, deep learning (DL) has been integrated with CS-MRI, leading to a new framework that has seen remarkable growth. DL-based CS-MRI approaches are proving to be highly effective in accelerating MR imaging without compromising image quality. This review comprehensively examines DL-based CS-MRI techniques, focusing on their role in increasing MR imaging speed. We provide a detailed analysis of each category of DL-based CS-MRI including end-to-end, unroll optimization, self-supervised, and federated learning. Our systematic review highlights significant contributions and underscores the exciting potential of DL in CS-MRI. Additionally, our systematic review efficiently summarizes key results and trends in DL-based CS-MRI including quantitative metrics, the dataset used, acceleration factors, and the progress of and research interest in DL techniques over time. Finally, we discuss potential future directions and the importance of DL-based CS-MRI in the advancement of medical imaging. To facilitate further research in this area, we provide a GitHub repository that includes up-to-date DL-based CS-MRI publications and publicly available datasets - https://github.com/mosaf/Awesome-DL-based-CS-MRI.

9.
Phys Med Biol ; 69(10)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38537293

RESUMO

This review paper aims to serve as a comprehensive guide and instructional resource for researchers seeking to effectively implement language models in medical imaging research. First, we presented the fundamental principles and evolution of language models, dedicating particular attention to large language models. We then reviewed the current literature on how language models are being used to improve medical imaging, emphasizing a range of applications such as image captioning, report generation, report classification, findings extraction, visual question response systems, interpretable diagnosis and so on. Notably, the capabilities of ChatGPT were spotlighted for researchers to explore its further applications. Furthermore, we covered the advantageous impacts of accurate and efficient language models in medical imaging analysis, such as the enhancement of clinical workflow efficiency, reduction of diagnostic errors, and assistance of clinicians in providing timely and accurate diagnoses. Overall, our goal is to have better integration of language models with medical imaging, thereby inspiring new ideas and innovations. It is our aspiration that this review can serve as a useful resource for researchers in this field, stimulating continued investigative and innovative pursuits of the application of language models in medical imaging.


Assuntos
Diagnóstico por Imagem , Diagnóstico por Imagem/métodos , Humanos , Idioma , Processamento de Imagem Assistida por Computador/métodos
10.
J Med Imaging (Bellingham) ; 11(1): 014503, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38370421

RESUMO

Purpose: Glioblastoma (GBM) is aggressive and malignant. The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter in GBM tissue is considered an important biomarker for developing the most effective treatment plan. Although the standard method for assessing the MGMT promoter methylation status is via bisulfite modification and deoxyribonucleic acid (DNA) sequencing of biopsy or surgical specimens, a secondary automated method based on medical imaging may improve the efficiency and accuracy of those tests. Approach: We propose a deep vision graph neural network (ViG) using multiparametric magnetic resonance imaging (MRI) to predict the MGMT promoter methylation status noninvasively. Our model was compared to the RSNA radiogenomic classification winners. The dataset includes 583 usable patient cases. Combinations of MRI sequences were compared. Our multi-sequence fusion strategy was compared with those using single MR sequences. Results: Our best model [Fluid Attenuated Inversion Recovery (FLAIR), T1-weighted pre-contrast (T1w), T2-weighted (T2)] outperformed the winning models with a test area under the curve (AUC) of 0.628, an accuracy of 0.632, a precision of 0.646, a recall of 0.677, a specificity of 0.581, and an F1 score of 0.661. Compared to the winning models with single MR sequences, our ViG utilizing fused-MRI showed a significant improvement statistically in AUC scores, which are FLAIR (p=0.042), T1w (p=0.017), T1wCE (p=0.001), and T2 (p=0.018). Conclusions: Our model is superior to challenge champions. A graph representation of the medical images enabled good handling of complexity and irregularity. Our work provides an automatic secondary check pipeline to ensure the correctness of MGMT methylation status prediction.

11.
Phys Med Biol ; 69(4)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38241726

RESUMO

Objective. High-resolution magnetic resonance imaging (MRI) can enhance lesion diagnosis, prognosis, and delineation. However, gradient power and hardware limitations prohibit recording thin slices or sub-1 mm resolution. Furthermore, long scan time is not clinically acceptable. Conventional high-resolution images generated using statistical or analytical methods include the limitation of capturing complex, high-dimensional image data with intricate patterns and structures. This study aims to harness cutting-edge diffusion probabilistic deep learning techniques to create a framework for generating high-resolution MRI from low-resolution counterparts, improving the uncertainty of denoising diffusion probabilistic models (DDPM).Approach. DDPM includes two processes. The forward process employs a Markov chain to systematically introduce Gaussian noise to low-resolution MRI images. In the reverse process, a U-Net model is trained to denoise the forward process images and produce high-resolution images conditioned on the features of their low-resolution counterparts. The proposed framework was demonstrated using T2-weighted MRI images from institutional prostate patients and brain patients collected in the Brain Tumor Segmentation Challenge 2020 (BraTS2020).Main results. For the prostate dataset, the bicubic interpolation model (Bicubic), conditional generative-adversarial network (CGAN), and our proposed DDPM framework improved the noise quality measure from low-resolution images by 4.4%, 5.7%, and 12.8%, respectively. Our method enhanced the signal-to-noise ratios by 11.7%, surpassing Bicubic (9.8%) and CGAN (8.1%). In the BraTS2020 dataset, the proposed framework and Bicubic enhanced peak signal-to-noise ratio from resolution-degraded images by 9.1% and 5.8%. The multi-scale structural similarity indexes were 0.970 ± 0.019, 0.968 ± 0.022, and 0.967 ± 0.023 for the proposed method, CGAN, and Bicubic, respectively.Significance. This study explores a deep learning-based diffusion probabilistic framework for improving MR image resolution. Such a framework can be used to improve clinical workflow by obtaining high-resolution images without penalty of the long scan time. Future investigation will likely focus on prospectively testing the efficacy of this framework with different clinical indications.


Assuntos
Bisacodil/análogos & derivados , Imageamento por Ressonância Magnética , Modelos Estatísticos , Masculino , Humanos , Razão Sinal-Ruído , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
12.
Med Phys ; 51(3): 1847-1859, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37646491

RESUMO

BACKGROUND: Daily or weekly cone-beam computed tomography (CBCT) scans are commonly used for accurate patient positioning during the image-guided radiotherapy (IGRT) process, making it an ideal option for adaptive radiotherapy (ART) replanning. However, the presence of severe artifacts and inaccurate Hounsfield unit (HU) values prevent its use for quantitative applications such as organ segmentation and dose calculation. To enable the clinical practice of online ART, it is crucial to obtain CBCT scans with a quality comparable to that of a CT scan. PURPOSE: This work aims to develop a conditional diffusion model to perform image translation from the CBCT to the CT distribution for the image quality improvement of CBCT. METHODS: The proposed method is a conditional denoising diffusion probabilistic model (DDPM) that utilizes a time-embedded U-net architecture with residual and attention blocks to gradually transform the white Gaussian noise sample to the target CT distribution conditioned on the CBCT. The model was trained on deformed planning CT (dpCT) and CBCT image pairs, and its feasibility was verified in brain patient study and head-and-neck (H&N) patient study. The performance of the proposed algorithm was evaluated using mean absolute error (MAE), peak signal-to-noise ratio (PSNR) and normalized cross-correlation (NCC) metrics on generated synthetic CT (sCT) samples. The proposed method was also compared to four other diffusion model-based sCT generation methods. RESULTS: In the brain patient study, the MAE, PSNR, and NCC of the generated sCT were 25.99 HU, 30.49 dB, and 0.99, respectively, compared to 40.63 HU, 27.87 dB, and 0.98 of the CBCT images. In the H&N patient study, the metrics were 32.56 HU, 27.65 dB, 0.98 and 38.99 HU, 27.00, 0.98 for sCT and CBCT, respectively. Compared to the other four diffusion models and one Cycle generative adversarial network (Cycle GAN), the proposed method showed superior results in both visual quality and quantitative analysis. CONCLUSIONS: The proposed conditional DDPM method can generate sCT from CBCT with accurate HU numbers and reduced artifacts, enabling accurate CBCT-based organ segmentation and dose calculation for online ART.


Assuntos
Bisacodil/análogos & derivados , Processamento de Imagem Assistida por Computador , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada por Raios X , Modelos Estatísticos , Planejamento da Radioterapia Assistida por Computador/métodos
13.
J Appl Clin Med Phys ; 25(2): e14155, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37712893

RESUMO

Recent advances in MRI-guided radiation therapy (MRgRT) and deep learning techniques encourage fully adaptive radiation therapy (ART), real-time MRI monitoring, and the MRI-only treatment planning workflow. Given the rapid growth and emergence of new state-of-the-art methods in these fields, we systematically review 197 studies written on or before December 31, 2022, and categorize the studies into the areas of image segmentation, image synthesis, radiomics, and real time MRI. Building from the underlying deep learning methods, we discuss their clinical importance and current challenges in facilitating small tumor segmentation, accurate x-ray attenuation information from MRI, tumor characterization and prognosis, and tumor motion tracking. In particular, we highlight the recent trends in deep learning such as the emergence of multi-modal, visual transformer, and diffusion models.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia
14.
Med Phys ; 51(4): 2538-2548, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38011588

RESUMO

BACKGROUND AND PURPOSE: Magnetic resonance imaging (MRI)-based synthetic computed tomography (sCT) simplifies radiation therapy treatment planning by eliminating the need for CT simulation and error-prone image registration, ultimately reducing patient radiation dose and setup uncertainty. In this work, we propose a MRI-to-CT transformer-based improved denoising diffusion probabilistic model (MC-IDDPM) to translate MRI into high-quality sCT to facilitate radiation treatment planning. METHODS: MC-IDDPM implements diffusion processes with a shifted-window transformer network to generate sCT from MRI. The proposed model consists of two processes: a forward process, which involves adding Gaussian noise to real CT scans to create noisy images, and a reverse process, in which a shifted-window transformer V-net (Swin-Vnet) denoises the noisy CT scans conditioned on the MRI from the same patient to produce noise-free CT scans. With an optimally trained Swin-Vnet, the reverse diffusion process was used to generate noise-free sCT scans matching MRI anatomy. We evaluated the proposed method by generating sCT from MRI on an institutional brain dataset and an institutional prostate dataset. Quantitative evaluations were conducted using several metrics, including Mean Absolute Error (MAE), Peak Signal-to-Noise Ratio (PSNR), Multi-scale Structure Similarity Index (SSIM), and Normalized Cross Correlation (NCC). Dosimetry analyses were also performed, including comparisons of mean dose and target dose coverages for 95% and 99%. RESULTS: MC-IDDPM generated brain sCTs with state-of-the-art quantitative results with MAE 48.825 ± 21.491 HU, PSNR 26.491 ± 2.814 dB, SSIM 0.947 ± 0.032, and NCC 0.976 ± 0.019. For the prostate dataset: MAE 55.124 ± 9.414 HU, PSNR 28.708 ± 2.112 dB, SSIM 0.878 ± 0.040, and NCC 0.940 ± 0.039. MC-IDDPM demonstrates a statistically significant improvement (with p < 0.05) in most metrics when compared to competing networks, for both brain and prostate synthetic CT. Dosimetry analyses indicated that the target dose coverage differences by using CT and sCT were within ± 0.34%. CONCLUSIONS: We have developed and validated a novel approach for generating CT images from routine MRIs using a transformer-based improved DDPM. This model effectively captures the complex relationship between CT and MRI images, allowing for robust and high-quality synthetic CT images to be generated in a matter of minutes. This approach has the potential to greatly simplify the treatment planning process for radiation therapy by eliminating the need for additional CT scans, reducing the amount of time patients spend in treatment planning, and enhancing the accuracy of treatment delivery.


Assuntos
Cabeça , Tomografia Computadorizada por Raios X , Masculino , Humanos , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria , Processamento de Imagem Assistida por Computador/métodos
15.
Retin Cases Brief Rep ; 18(1): 51-58, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007192

RESUMO

PURPOSE: To report 6 cases of diffuse choroidal hemangioma in children treated with iodine-125 plaque brachytherapy at a single tertiary care center. METHODS: Retrospective case series. RESULTS: Six pediatric patients diagnosed with diffuse choroidal hemangioma were included in the study. Preplaque visual acuity ranged from 20/150 to no light perception. All patients had extensive serous retinal detachment at presentation. An iodine-125 radioactive plaque was placed on the affected eye to administer a dose of 34.2-42.1 Gy to the tumor apex over a median of 4 days. Tumor regression and subretinal fluid resolution were observed in all eyes within 17 months of treatment. Visual acuity improved in two patients. Radiation-induced cataract and subretinal fibrosis were documented in one case, and one patient developed radiation retinopathy. No patients developed neovascular glaucoma within the follow-up time of 12-65 months. CONCLUSION: Iodine-125 plaque radiotherapy is an effective option for diffuse choroidal hemangioma, although there is a risk for radiation-induced complications.


Assuntos
Braquiterapia , Neoplasias da Coroide , Hemangioma , Humanos , Criança , Braquiterapia/efeitos adversos , Estudos Retrospectivos , Hemangioma/radioterapia , Hemangioma/tratamento farmacológico , Radioisótopos do Iodo/uso terapêutico , Neoplasias da Coroide/diagnóstico , Seguimentos , Resultado do Tratamento
16.
Phys Med Biol ; 68(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972414

RESUMO

The hippocampus plays a crucial role in memory and cognition. Because of the associated toxicity from whole brain radiotherapy, more advanced treatment planning techniques prioritize hippocampal avoidance, which depends on an accurate segmentation of the small and complexly shaped hippocampus. To achieve accurate segmentation of the anterior and posterior regions of the hippocampus from T1 weighted (T1w) MR images, we developed a novel model, Hippo-Net, which uses a cascaded model strategy. The proposed model consists of two major parts: (1) a localization model is used to detect the volume-of-interest (VOI) of hippocampus. (2) An end-to-end morphological vision transformer network (Franchietal2020Pattern Recognit.102107246, Ranemetal2022 IEEE/CVF Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW) pp 3710-3719) is used to perform substructures segmentation within the hippocampus VOI. The substructures include the anterior and posterior regions of the hippocampus, which are defined as the hippocampus proper and parts of the subiculum. The vision transformer incorporates the dominant features extracted from MR images, which are further improved by learning-based morphological operators. The integration of these morphological operators into the vision transformer increases the accuracy and ability to separate hippocampus structure into its two distinct substructures. A total of 260 T1w MRI datasets from medical segmentation decathlon dataset were used in this study. We conducted a five-fold cross-validation on the first 200 T1w MR images and then performed a hold-out test on the remaining 60 T1w MR images with the model trained on the first 200 images. In five-fold cross-validation, the Dice similarity coefficients were 0.900 ± 0.029 and 0.886 ± 0.031 for the hippocampus proper and parts of the subiculum, respectively. The mean surface distances (MSDs) were 0.426 ± 0.115 mm and 0.401 ± 0.100 mm for the hippocampus proper and parts of the subiculum, respectively. The proposed method showed great promise in automatically delineating hippocampus substructures on T1w MR images. It may facilitate the current clinical workflow and reduce the physicians' effort.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Inteligência Artificial , Processamento de Imagem Assistida por Computador/métodos
17.
ArXiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38013889

RESUMO

BACKGROUND: Dual-energy CT (DECT) and material decomposition play vital roles in quantitative medical imaging. However, the decomposition process may suffer from significant noise amplification, leading to severely degraded image signal-to-noise ratios (SNRs). While existing iterative algorithms perform noise suppression using different image priors, these heuristic image priors cannot accurately represent the features of the target image manifold. Although deep learning-based decomposition methods have been reported, these methods are in the supervised-learning framework requiring paired data for training, which is not readily available in clinical settings. PURPOSE: This work aims to develop an unsupervised-learning framework with data-measurement consistency for image-domain material decomposition in DECT.

18.
ArXiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37396614

RESUMO

Background: The hippocampus plays a crucial role in memory and cognition. Because of the associated toxicity from whole brain radiotherapy, more advanced treatment planning techniques prioritize hippocampal avoidance, which depends on an accurate segmentation of the small and complexly shaped hippocampus. Purpose: To achieve accurate segmentation of the anterior and posterior regions of the hippocampus from T1 weighted (T1w) MRI images, we developed a novel model, Hippo-Net, which uses a mutually enhanced strategy. Methods: The proposed model consists of two major parts: 1) a localization model is used to detect the volume-of-interest (VOI) of hippocampus. 2) An end-to-end morphological vision transformer network is used to perform substructures segmentation within the hippocampus VOI. The substructures include the anterior and posterior regions of the hippocampus, which are defined as the hippocampus proper and parts of the subiculum. The vision transformer incorporates the dominant features extracted from MRI images, which are further improved by learning-based morphological operators. The integration of these morphological operators into the vision transformer increases the accuracy and ability to separate hippocampus structure into its two distinct substructures.A total of 260 T1w MRI datasets from Medical Segmentation Decathlon dataset were used in this study. We conducted a five-fold cross-validation on the first 200 T1w MR images and then performed a hold-out test on the remaining 60 T1w MR images with the model trained on the first 200 images. The segmentations were evaluated with two indicators, 1) multiple metrics including the Dice similarity coefficient (DSC), 95th percentile Hausdorff distance (HD95), mean surface distance (MSD), volume difference (VD) and center-of-mass distance (COMD); 2) Volumetric Pearson correlation analysis. Results: In five-fold cross-validation, the DSCs were 0.900±0.029 and 0.886±0.031 for the hippocampus proper and parts of the subiculum, respectively. The MSD were 0.426±0.115mm and 0.401±0.100 mm for the hippocampus proper and parts of the subiculum, respectively. Conclusions: The proposed method showed great promise in automatically delineating hippocampus substructures on T1w MRI images. It may facilitate the current clinical workflow and reduce the physicians' effort.

19.
Phys Med Biol ; 68(10)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015231

RESUMO

Objective. Artificial intelligence (AI) methods have gained popularity in medical imaging research. The size and scope of the training image datasets needed for successful AI model deployment does not always have the desired scale. In this paper, we introduce a medical image synthesis framework aimed at addressing the challenge of limited training datasets for AI models.Approach. The proposed 2D image synthesis framework is based on a diffusion model using a Swin-transformer-based network. This model consists of a forward Gaussian noise process and a reverse process using the transformer-based diffusion model for denoising. Training data includes four image datasets: chest x-rays, heart MRI, pelvic CT, and abdomen CT. We evaluated the authenticity, quality, and diversity of the synthetic images using visual Turing assessments conducted by three medical physicists, and four quantitative evaluations: the Inception score (IS), Fréchet Inception Distance score (FID), feature similarity and diversity score (DS, indicating diversity similarity) between the synthetic and true images. To leverage the framework value for training AI models, we conducted COVID-19 classification tasks using real images, synthetic images, and mixtures of both images.Main results. Visual Turing assessments showed an average accuracy of 0.64 (accuracy converging to50%indicates a better realistic visual appearance of the synthetic images), sensitivity of 0.79, and specificity of 0.50. Average quantitative accuracy obtained from all datasets were IS = 2.28, FID = 37.27, FDS = 0.20, and DS = 0.86. For the COVID-19 classification task, the baseline network obtained an accuracy of 0.88 using a pure real dataset, 0.89 using a pure synthetic dataset, and 0.93 using a dataset mixed of real and synthetic data.Significance. A image synthesis framework was demonstrated for medical image synthesis, which can generate high-quality medical images of different imaging modalities with the purpose of supplementing existing training sets for AI model deployment. This method has potential applications in many data-driven medical imaging research.


Assuntos
Inteligência Artificial , COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Difusão , Modelos Estatísticos , Processamento de Imagem Assistida por Computador
20.
ArXiv ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36994167

RESUMO

MRI-guided radiation therapy (MRgRT) offers a precise and adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed. MRI-guided radiation therapy offers a precise, adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed with emphasis placed on underlying methods. Studies are further categorized into the areas of segmentation, synthesis, radiomics, and real time MRI. Finally, clinical implications, current challenges, and future directions are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...