Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(27): 69711-69726, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37150789

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) with their carcinogenic, teratogenic, and mutagenic effects can cause great damage to the ecosystem and public health when present in water. With bioremediation, PAH contamination in water environment can be greatly reduced in an eco-friendly manner. It has thus become the research focus for many environmental scientists. In this study, a bibliometric analysis on three-decade (1990-2022) development of PAH bioremediation in water environment was conducted from temporal and spatial dimensions using CiteSpace. A total of 2480 publications, obtained from Web of Science core collection database, were used to explore the basic characteristics, hotspots, and prospects of the research area. The results showed that (1) bioremediation/biodegradation of PAHs in water environment has been getting researchers' attention since 1990, and is gaining even more traction as time goes on. (2) In terms of countries, China and the USA were the major contributors in this research area, while at the institutional level, the Chinese Academy of Sciences has produced the most research results. However, international cooperation across regions was lacking in the field. (3) Environment Science and Technology, Chemosphere, Applied and Environment Microbiology, Journal of Hazardous Materials, and Environment Pollution were the 5 most cited journals in this field. (4) There were three major stages the field has gone through, each with distinct research hotspots, including initial stage (1990-1994), mechanism investigation (1995-2000), and application exploration (2001-2010; 2011-2022). Finally, research perspectives were proposed, covering three directions, namely, bioavailability, immobilization, and viable but nonculturable (VBNC) bacteria.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Água , Biodegradação Ambiental , Água/análise , Ecossistema , Microbiologia Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Bibliometria
2.
Polymers (Basel) ; 15(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38232027

RESUMO

The treatment and reuse of wastewater are crucial for the effective utilization and protection of global water resources. Polycyclic aromatic hydrocarbons (PAHs), as one of the most common organic pollutants in industrial wastewater, are difficult to remove due to their relatively low solubility and bioavailability in the water environment. However, biosurfactants with both hydrophilic and hydrophobic groups are effective in overcoming these difficulties. Therefore, a biosurfactant-producing strain Pseudomonas mosselii MP-6 was isolated in this study to enhance the bioavailability and biodegradation of PAHs, especially high-molecular-weight PAHs (HMW-PAHs). FTIR and LC-MS analysis showed that the MP-6 surfactant belongs to rhamnolipids, a type of biopolymer, which can reduce the water surface tension from 73.20 mN/m to 30.61 mN/m at a critical micelle concentration (CMC = 93.17 mg/L). The enhanced solubilization and biodegradation of PAHs, particularly HMW-PAHs (when MP-6 was introduced), were also demonstrated in experiments. Furthermore, comprehensive environmental stress tolerance tests were conducted to confirm the robustness of the MP-6 biosurfactant, which signifies the potential adaptability and applicability of this biosurfactant in diverse environmental remediation scenarios. The results of this study, therefore, have significant implications for future applications in the treatment of wastewater containing HMW-PAHs, such as coking wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...