Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 352: 124149, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735458

RESUMO

This study investigated the effects of the antidepressant sertraline hydrochloride (Ser-HCI) on rice physiology when combined with arsenic (III) or cadmium. Hydroponic experiments revealed that combined lower concentrations (0.2 and 0.6 mg L-1) of Ser-HCl and As (III) or Cd increased rice biomass and reduced pH and low molecular weight organic acids. The fluorescence intensity was enhanced with Ser-HCl and As-only treatments, with a significant difference (p < 0.05) in the dissolved organic matter index. There was a decrease in endophyte-specific operational taxonomic units, with proteobacteria dominating the rice root endophytes. The addition of Ser-HCl resulted in the Verrucomicrobiota increasing by 6.4 times, which was positively correlated with malic acid and negatively correlated with pH. Functional annotation highlighted alterations in carbohydrate metabolism pathways. This study provides insights into the interactive effects of Ser-HCl on rice when combined with As (III) or Cd, addressing gaps in our understanding of the impact of antidepressants on plant systems.


Assuntos
Arsênio , Cádmio , Endófitos , Oryza , Raízes de Plantas , Rizosfera , Sertralina , Poluentes do Solo , Oryza/microbiologia , Sertralina/farmacologia , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Endófitos/fisiologia , Arsênio/toxicidade , Microbiologia do Solo
2.
Sci Total Environ ; 924: 171633, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38471591

RESUMO

Micro and nanoplastics (MPs/NPs) coupled with heavy metals are prevalent in both aquatic and terrestrial ecosystems. Their ecological toxicity and combined adverse effects have obtained significant concern. Past studies primarily focused on how MPs/NPs influence the behavior of heavy metals. Yet, the possible effects of heavy metals on MP/NP transport and toxicity within co-contaminated systems are still not well-understood. In this study, we conducted split-root experiments to explore the transport and toxicity of polystyrene (PS) particles of varying sizes in parsley seedlings, both with and without the addition of cadmium (Cd). Both the PS-NPs (100 nm) and PS-MPs (300 nm) traveled from the PS-spiked roots (Roots-1) to the non-PS-spiked roots (Roots-2), with or without Cd, possibly because of phloem transport. Furthermore, the presence of Cd reduced the accumulation and movement of PS-NP/MP in the roots, likely due to the increased positive charge (Cd2+) on the PS surface. PS-NPs/MPs in both Roots-1 and Roots-2 were observed using transmission electron microscopy (TEM). When Cd was added to either Roots-1 (PS + Cd|H) or Roots-2 (PS|Cd), there was a minor reduction in the chlorophyll a and carotenoids content in leaves with PS|H. The adverse impacts of MPs|H on both indicators were influenced by the MP concentration. However, chlorophyll b significantly increased in the PS|H, PS + Cd|H, and PS|Cd treatments. Consequently, the chlorophyll a/b ratio declined, indicating inhibition of photosynthesis. The dehydrogenase content showed a minor change in Roots-1 and Roots-2 without Cd stress, whereas it significantly decreased on the Cd-spiked side and subsequently inhibited root growth. In contrast, the marked rise in glutathione (GSH) levels within Cd-spiked roots suggested, based on Gaussian analysis, that GSH and Cd chelation were instrumental in mitigating Cd toxicity. When Cd was introduced to both Roots-1 and Roots-2 simultaneously (PS + Cd|Cd), the aforementioned index showed a notable decline.


Assuntos
Cádmio , Metais Pesados , Cádmio/toxicidade , Poliestirenos/toxicidade , Clorofila A , Petroselinum , Ecossistema , Glutationa , Plásticos
3.
J Hazard Mater ; 468: 133857, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402685

RESUMO

As emerging environmental pollutants, microplastics have become a crucial focus in environmental science research. Despite this, the impact of microplastics on soil in flooding conditions remains largely unexplored. Addressing this gap, our study examined the influence of polystyrene (PS) and polyphenylene sulfide (PPS) on the microbial populations in black soil, meadow soil, and paddy soil under flooded conditions. Given the significant regulatory influence exerted by microorganisms on sulfur transformations, our study was primarily focused on evaluating the microbial contributions to alterations in soil sulfur species. Our findings revealed several notable trends: In black soil, both PS and PPS led to a marked increase in the abundance of γ-proteobacteria and Subgroup_6, while reducing Clostridia. Ignavibacteria were found to be lower under PPS compared to PS. In meadow soil, the introduction of PPS resulted in increased levels of KD4-96 and γ-proteobacteria, while α-proteobacteria decreased. Chloroflexia under PPS was observed to be lower than under PS conditions. In paddy soil, our study identified a significant rise in Bacteroidia and Ignavibacteria, accompanied by a decrease in α-proteobacteria and γ-proteobacteria. γ-proteobacteria levels under PPS were notably higher than those under PS conditions. These shifts in microbial communities induced by both PS and PPS had a direct impact on adenosine 5'-phosphosulfate reductase, sulfite reductase, and polysulfide dioxygenase. Consequently, these changes led to soil organic sulfur decrease and sulfide increase. This study not only offers a theoretical framework but also provides empirical evidence for understanding the effects of microplastics on soil microorganisms and their role in regulating nutrient cycling, particularly in flood-prone conditions. Furthermore, this study underscores the importance of ensuring an adequate supply of sulfur in agricultural practices, such as rice and lotus root cultivation, to support optimal crop growth in the presence of microplastic pollution.


Assuntos
Gammaproteobacteria , Oryza , Solo , Plásticos , Microplásticos , Inundações , Bactérias/genética , Enxofre
4.
J Hazard Mater ; 465: 133432, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219596

RESUMO

Microplastics can potentially affect the physical and chemical properties of soil, as well as soil microbial communities. This could, in turn, influence soil sulfur REDOX processes and the ability of soil to supply sulfur effectively. However, the specific mechanisms driving these effects remain unclear. To explore this, soil microcosm experiments were conducted to assess the impacts of polystyrene (PS) and polyphenylene sulfide (PPS) microplastics on sulfur reduction-oxidation (REDOX) processes in black, meadow, and paddy soils. The findings revealed that PS and PPS most significantly decreased SO42- in black soil by 9.4%, elevated SO42- in meadow soil by 20.8%, and increased S2- in paddy soil by 20.5%. PS and PPS microplastics impacted the oxidation process of sulfur in soil by influencing the activity of sulfur dioxygenase, which was mediated by α-proteobacteria and γ-proteobacteria, and the oxidation process was negatively influenced by soil organic matter. PS and PPS microplastics impacted the reduction process of sulfur in soil by influencing the activity of adenosine-5'-phosphosulfate reductase, sulfite reductase, which was mediated by Desulfuromonadales and Desulfarculales, and the reduction process was positively influenced by soil organic matter. In addition to their impacts on microorganisms, it was found that PP and PPS microplastics directly influenced the structure of soil enzymes, leading to alterations in soil enzyme activity. This study sheds light on the mechanisms by which microplastics impact soil sulfur REDOX processes, providing valuable insights into how microplastics influence soil health and functioning, which is essential for optimizing crop growth and maximizing yield in future agricultural practices.


Assuntos
Microplásticos , Solo , Plásticos , Agricultura , Poliestirenos , Enxofre
5.
J Hazard Mater ; 464: 132942, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37992502

RESUMO

Microplastics can affect the physicochemical properties of soil and soil microorganisms, potentially resulting in changes in the soil sulfur mineralization and its capacity to supply available sulfur. However, the specific mechanisms underlying these effects remain unclear. We performed soil microcosm experiments, in which the effects of polystyrene (PS) and polyphenylene sulfide (PPS) microplastics on sulfur mineralization were examined in black, meadow, and paddy soils under flooded and dry conditions. Under dry condition, the presence of PS and PPS microplastics impeded sulfur (S) mineralization in black and paddy soils, but promoted sulfur mineralization in meadow soil. The size of microplastics was identified as the primary factor influencing sulfur mineralization in black soil, while in meadow soil, it was influenced by the microplastics type. In the case of paddy soil, the concentration of microplastics was the key factor affecting sulfur mineralization. During the flooding period, PS and PPS microplastics in black and paddy soils curtailed sulfur mineralization, however expedited sulfur mineralization in meadow soil, with PS enhancing soil sulfur mineralization more pronouncedly than PPS in black soil. The type and concentration of microplastics were identified as the main factors affecting sulfur mineralization in black soil, while in paddy soil, it was influenced by the size of microplastics. The principal regulating factors of soil sulfur mineralization were the sulphatase and arylsulfatase enzymes produced by Actinobacteria, Xanthomonadales, and Rhizobiales microorganisms, while organic matter and Olsen-P also had an influential role. Additionally, microplastics directly affected the structure of soil enzymes, thereby altering soil enzyme activities. This study provided insights into the mechanism by which microplastics affect soil sulfur mineralization, offering significant implications for assessing the influence of microplastics on soil sulfur availability and making informed decisions about sulfur application in future agricultural practices.


Assuntos
Oryza , Solo , Solo/química , Microplásticos , Plásticos , Enxofre
6.
ACS Omega ; 8(28): 24912-24921, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483186

RESUMO

The utilization of high-efficiency adsorption materials to reduce cadmium pollution in aquatic environments is the focus of current environmental remediation research. Straw waste and sludge, which are available in huge amounts, can be best utilized in the preparation of environmental remediation materials. In this study, six types of biochar (SBC, CBC, DBC, SD1BC, SRDBC, and SCDBC) were prepared from straw and sludge by co-pyrolysis, and their cadmium adsorption mechanisms were explored. Cd(II) adsorption isotherms and kinetics on the biochar were determined and fitted to different models. Kinetic modeling was used to characterize the Cd(II) adsorption of biochar, and findings revealed the process of sorption followed pseudo-second-order kinetics (R2 > 0.96). The Langmuir model accurately represented the isotherms of adsorption, indicating that the process was monolayer and controlled by chemical adsorption. SCDBC had the highest capacity for Cd(II) adsorption (72.2 mg g-1), 1.5 times greater than that of sludge biochar, and 3 times greater than that of corn straw biochar. As the pH level rose within the range of pH 5.0 to 7.0 and the ionic strength decreased, the adsorption capacity experienced an increase. SCDBC contained CaCO3 mineral crystals before Cd(II) adsorption, and CdCO3 was found in SCDBC after adsorbing Cd(II) via X-ray diffraction analysis; the peak of Cd could be observed by Fourier transform infrared spectroscopy after the adsorption of Cd(II). The possible adsorption of Cd(II) by SCDBC occurred primarily via surface complexation with active sorption sites, precipitation with inorganic anions, and coordination with π electrons. Collectively, the study suggested that the six types of biochar, particularly SCDBC, could be used as highly efficient adsorbents for Cd(II) removal from aquatic environments.

7.
J Sci Food Agric ; 103(15): 7424-7433, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37385969

RESUMO

BACKGROUND: This study examined the changes in soil fertility in a maize cropping area when chemical fertilizer was partially replaced with straw or livestock manure over a 33-year period. Four treatments were included: (i) CK (no fertilizer application); (ii) NPK (only chemical fertilizer application); (iii) NPKM (chemical fertilizer partly replaced with livestock manure); (iv) NPKS (chemical fertilizer partly replaced with straw). RESULTS: Soil organic carbon increased by 41.7% and 95.5% in the NPKS and NPKM treatments, respectively, over the 33-year trial compared with the initial concentration. However, soil organic carbon in NPK was significantly reduced by 9.8%. Soil total N, P and K increased in both NPKM and NPKS treatments compared to the original soil. Soil pH was significantly acidified from 7.6 to 5.97 in the NPK treatment during the experimental period. The NPKM and NPKS treatments buffered the acidification compared to NPK. Meta-analysis results showed that, compared with NPK, NPKM significantly raised soil bacteria and fungi populations by 38.7% and 58.6%; enhanced microbial biomass carbon and nitrogen by 66.3% and 63%, respectively; and increased sucrase, urease and catalase activities by 34.2%, 48.2% and 21.5%. NPKS significantly increased soil fungi and actinomycetes populations by 24.3% and 41.2%, respectively; enhanced microbial biomass carbon and nitrogen by 27.1% and 45%; and strengthened sucrase and urease activities by 36% and 20.3%, respectively. CONCLUSION: Long-term chemical fertilizer application led to the deterioration of soil fertility and environment. Partial replacement of chemical fertilizers with organic materials could significantly amend and buffer such negative effects. © 2023 Society of Chemical Industry.


Assuntos
Fertilizantes , Solo , Fertilizantes/análise , Agricultura , Esterco/análise , Carbono/análise , Urease , Nitrogênio/análise , Sacarase , China
8.
J Clin Lab Anal ; 37(6): e24875, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003602

RESUMO

BACKGROUND: Whether the levels of circulating inflammatory adipokines affect the progression of type 2 diabetes (T2D) remains unclear. This study aimed to assess the association between circulating inflammatory adipokine levels and risk of T2D. METHODS: This case-control study involved 130 individuals consisting of 66 healthy controls (Control group) and 64 patients with T2D (T2D group) in Lishui Municipal Central Hospital from January 2017 to June 2017. Multivariate logistic regression analysis was applied to assess the associations between circulating inflammatory adipokine levels and the risk of T2D. RESULTS: There were significant differences in the levels of adiponectin (p = 0.013) and visfatin (p < 0.001) between the T2D and Control groups. In contrast, no significant differences in leptin (p = 0.113), TNF-α (p = 0.632), and IL-6 (p = 0.156) levels were found between the groups. Multivariate logistic regression indicated that elevated visfatin level was associated with an increased risk of T2D (OR: 3.543; 95% CI: 1.771-7.088; p < 0.001), while adiponectin (OR: 1.946; 95% CI: 0.925-4.094; p = 0.079), leptin (OR: 3.723; 95% CI: 0.788-17.583; p = 0.097), TNF-α (OR: 1.081; 95% CI: 0.911-1.281; p = 0.373), and IL-6 (OR: 0.878; 95% CI: 0.657-1.173; p = 0.379) were not associated with the risk of T2D. CONCLUSIONS: This study found elevated visfatin levels are associated with an increased risk of T2D, while adiponectin, leptin, TNF-α, and IL-6 are not. These findings should be further verified by a large-scale prospective study.


Assuntos
Adipocinas , Diabetes Mellitus Tipo 2 , Humanos , Masculino , Leptina , Adiponectina , Nicotinamida Fosforribosiltransferase , Diabetes Mellitus Tipo 2/epidemiologia , Fator de Necrose Tumoral alfa , Interleucina-6 , Estudos Prospectivos , Estudos de Casos e Controles , População do Leste Asiático
9.
J Environ Manage ; 340: 118002, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37119631

RESUMO

Water diverted from rivers for irrigation areas often contains large amounts of nitrogen (N), which is frequently overlooked and its role in contributing to N pollution is unknown. To investigate the influence of water diversion on N in different systems within irrigation areas, we developed and optimized the N footprint model, taking into account the N carried by irrigation water diversion and drainage in irrigated areas. This optimized model can serve as a reference for evaluating N pollution in other irrigated areas. By analyzing 29 years (1991-2019) of statistical data from a diverted irrigation area in Ningxia Hui Autonomous Region (Ningxia), China, the study assessed the contribution of water diversion to N in agriculture, animal husbandry, and human domestic activities. The results demonstrated that water diversion and drainage accounted for 10.3% and 13.8% in whole system, of the total N input and output in Ningxia, highlighting the potential N pollution risks associated with these activities. Additionally, the use of fertilizers in the plant subsystem, feed in the animal subsystem, and sanitary sewage in the human subsystem represented the main sources of N pollution in each subsystem. On a temporal scale, the study found that N loss increased year by year before reaching a stable level, indicating that N loss had reached its peak in Ningxia. The correlation analysis suggested that rainfall could regulate N input and output in irrigated areas by showing a negative correlation with water diversion, agricultural water consumption, and N from irrigated areas. Moreover, the study revealed that the amount of N brought by water diverted from rivers for irrigation should be taken into account when calculating the amount of fertilizer N required in the irrigation area.


Assuntos
Irrigação Agrícola , Nitrogênio , Humanos , Animais , Nitrogênio/análise , Irrigação Agrícola/métodos , Poluição Ambiental/análise , Agricultura/métodos , Água/análise , China , Fertilizantes/análise
11.
J Hazard Mater ; 421: 126694, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34332483

RESUMO

Although the compound pollution of microplastics and arsenic (As) in paddy soil can affect the growth and quality of rice, relevant research on this phenomenon was limited. Therefore, we combined a pot experiment with computational chemistry to explore the effects and mechanism of polystyrene (PSMP) and polytetrafluoroethylene (PTFE) microplastics on As bioavailability. PSMP and PTFE interacted with rice root exudates through van der Waals forces, approached the rice root system, inhibited root activity, reduced the relative abundance of Geobacteria and Anaeromyxobacter, and consequently reduced the iron plaques on the root surfaces. Consequently, As uptake by the rice was inhibited. PSMP and PTFE reduced the hemoglobin content by directly destroying its tertiary structure, thereby retarding rice growth. In contrast, As increased the hemoglobin content by inducing reactive oxygen species in rice. Under the influence of PSMP, PTFE, and As, the activities of soluble starch synthase and pyrophosphorylase in rice grains were inhibited, and starch accumulation decreased. Thus, PSMP, PTFE, and As reduced rice biomass and yield owing to their physiological toxicity and adverse impacts on root activity. Grain yields in soil with an As content of 86.3 mg·kg-1, 0.5% small particle-sized PSMP, and 0.5% small particle-sized PTFE decreased by 30.7%, 20.6%, and 19.4%, respectively, compared to the control. This study determined the comprehensive mechanism through which PSMP and PTFE affect As bioavailability, which is critical for managing rice biomass and low yields in As and microplastic co-contaminated soil.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Arsênio/toxicidade , Microplásticos , Plásticos/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
12.
Front Genet ; 12: 679204, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421992

RESUMO

The pathogenesis of sporadic amyotrophic lateral sclerosis (sALS) remains unknown; however, recent research suggests that genetic factors may play an important role. This study aimed at investigating possible genetic risk factors for the pathogenesis of sALS. In our previous study, we conducted a genome-wide association study (GWAS) in 250 sALS patients and 250 control participants of Han ancestry from mainland China (HACM) and retrospectively analyzed the previously reported candidate loci related with sALS including our GWAS investigated results. In this study, twenty-seven candidate loci that were most likely associated with sALS were selected for further analysis in an independent case/control population of 239 sALS patients and 261 control subjects of HACM ethnicity using sequenom massARRAY methodology and DNA sequencing. We discovered that the polymorphism rs2619566 located within the contactin-4 (CNTN4) gene, rs10260404 in the dipeptidyl-peptidase 6 (DPP6) gene, and rs79609816 in the inositol polyphosphate-5-phosphatase B (INPP5B) gene were strongly associated with sALS in subjects of HACM ethnicity. Subjects harboring the minor C allele of rs2619566 and the minor T allele of rs79609816 exhibited an increased risk for sALS development, while carriers of the minor C allele of rs10260404 showed a decreased risk of sALS development compared to the subjects of other genotypes. The polymorphisms of rs2619566, rs10260404, and rs79609816 may change or affect the splicing, transcription, and translation of CNTN4, DPP6, and INPP5B genes and may play roles in the pathogenesis of sALS roles in the pathogenesis of sALS.

13.
Environ Sci Pollut Res Int ; 28(45): 64503-64515, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34308520

RESUMO

The large-scale use of polytetrafluoroethylene has resulted in ever-increasing amounts of polytetrafluoroethylene (PTFE) microplastic particles entering the environment. Given that the environment is polluted with arsenic (As(III)), and that the environment contains significant levels of humic acid (HA) and fulvic acid (FA), how PTFE and As(III) in water interacting in the presence of HA and FA needs to be urgently investigated. The results showed that As(III) was adsorbed by PTFE in the presence of HA and FA more markedly than the absence of them Adsorption equilibrium was reached at approximately 960 min and the adsorption isotherms were found to be best fitted by the Toth model. An increase in temperature was found to destroy hydrogen bonds, resulting in inhibited, non-spontaneous adsorption; a higher pH inhibited adsorption in the range 3-7. Computational and mechanistic studies revealed that PTFE formed π complexes with HA units, which increased the number of oxygen-containing functional groups on its surface. The surface of the PTFE-HA π complex was mostly negatively charged; however, the hydrogen atoms of the hydroxyl and carboxylic acid groups exhibited large positive potentials that enabled the adsorption of As(III). When the oxygen atom on As was close to the oxygen-containing functional group on PTFE-HA, the more electronegative oxygen atom forms a special intermolecular interaction in the form of O-H···O through the medium of hydrogen, which makes As adsorb on the surface of PTFE. Pore filling, hydrogen bonding, and covalent bonding are the main ways in which PTFE adsorbs As(III) in the presence of HA and FA. PTFE also adsorbed more As(III) in the presence of HA than in the presence of FA.


Assuntos
Arsênio , Adsorção , Benzopiranos , Substâncias Húmicas/análise , Plásticos , Politetrafluoretileno
14.
Environ Sci Pollut Res Int ; 28(36): 49889-49898, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33948836

RESUMO

As can be volatilized naturally; however, this has adverse environmental effects. In this study, we investigated As volatilization in flooded paddy soil with the addition of biochar (BC) and Fe-Mn-La-modified BC composites (FMLBCs). The addition of BC and FMLBCs caused decreases in total As volatilization in the soil over 7 weeks. Maximum volatilization was achieved in the third week followed by stabilization. Volatilization decreased by 21.9%, 18.8%, 20.8%, and 31.1% with the addition of BC, FMLBC1, FMLBC2, and FMLBC3 (BC/Fe/Mn/La weight ratios different), respectively, in lightly contaminated soil, and by 15.2%, 20.5%, 17.6%, and 25.4%, respectively, in highly contaminated soil. The FMLBCs decreased the exchangeable As fractions and increased the non-swappable As in the soil. Furthermore, the addition of FMLBCs significantly reduced the As(III) concentration in a suspended solution (P < 0.05), whereas no significant changes were observed in the As(V) or methyl arsenic acid concentrations. Soil enzyme activity increased and the relative abundances of Proteobacteria and Actinobacteria changed with the addition of FMLBCs. Therefore, the mechanism by which FMLBCs affected As volatilization likely included the following two aspects: (1) FMLBCs affected the transformation and distribution of soil As and decreased As dissolution, crystallization, and methylation; (2) FMLBCs influenced soil properties, which directly affected microorganism activity, thereby affecting As volatilization. FMLBCs therefore can decrease As volatilization properties and be used to control As volatilization in As-contaminated paddy soils.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Carvão Vegetal , Ferro , Solo , Poluentes do Solo/análise , Volatilização
15.
Environ Sci Pollut Res Int ; 28(26): 34979-34989, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33661497

RESUMO

The purpose of this study was to develop a MoS2-impregnated biochar (MoS2@BC) via hydrothermal reaction for adsorption of cadmium (Cd) from an aqueous solution. The prepared adsorbents were characterized, and their abilities to remove Cd(II) were evaluated. The Langmuir and pseudo-second-order models better described the removal of Cd(II) by MoS2@BC. The prepared MoS2@BC exhibited excellent monolayer adsorption capacity. The S-containing functional groups on MoS2@BC enhanced the adsorption of Cd(II). Multiple Cd(II) sorption mechanisms were identified; including Cd(II)-π interactions, ion exchange, electrostatic interaction, and complexation. The dominant mechanism involved Cd-O (38.3%) bonds and Cd-S complexation (61.7%) on MoS2@BC. The as-prepared MoS2@BC is both economical and efficient, making it an excellent material for environmental Cd(II) remediation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Cádmio/análise , Carvão Vegetal , Cinética , Molibdênio , Poluentes Químicos da Água/análise
16.
J Hazard Mater ; 411: 125055, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33482507

RESUMO

Current research on the migration of microplastics into plants is in its most important phase; however, there is no such research on root vegetables, even though the edible parts of root vegetables are in direct contact with microplastics. Considering arsenic (As)-containing groundwater used in hydroponics and the degradation of plastic materials in hydroponic facilities, we investigated the impacts of As and polystyrene (PS) microplastics on carrot growth. We found that PS microplastics sized 1 µm can enter carrot roots and accumulate in the intercellular layer but are unable to enter the cells; those sized 0.2 µm can migrate to the leaves. Larger microplastics can enter the roots (PS particles sized 1219.7 nm) and leaves (607.2 nm) in presence of As (III). Gaussian analysis shows that As increases the negatively charged area of PS and causes a greater amount of microplastics to enter the carrot. As also causes cell walls to distort and deform, allowing PS particles (< 200 nm) to enter the cells. PS and 4 mg L-1 As can induce oxidative bursts in carrot tissue, reducing the carrot quality. Moreover, As exacerbates the effect of PS on carrots. Molecular docking results show that the presence of PS in carrots destroys the tertiary structure of pectin methyl esterase and causes carrots to lose their crispness. These findings indicate that plastic material in hydroponic facilities can be leached to crops. Microplastics produced by the degradation of such materials not only reduce the nutritional value of carrots, leading to economic losses, but also pose potential risks to human health. The presence of As in the hydroponic solution results in more PS entering the carrot tissue and even the cells, bringing greater health threats for the consumers.


Assuntos
Arsênio , Daucus carota , Arsênio/toxicidade , Humanos , Microplásticos , Simulação de Acoplamento Molecular , Plásticos/toxicidade , Poliestirenos/toxicidade
17.
Ecotoxicol Environ Saf ; 211: 111899, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33453641

RESUMO

The presence of microplastics and arsenic in soil can endanger crop growth; therefore, their effects on the properties of rhizosphere soil should be evaluated. Large (10-100 µm) and small (0.1-1 µm) polystyrene (PSMP) and polytetrafluorethylene (PTFE) particles were added to soil with different arsenic concentrations (1.4, 24.7, and 86.3 mg kg-1) to investigate the combined effect of microplastics and arsenic pollution on rice rhizosphere soil. After the addition of PSMP and PTFE, pH, arsenic (V) and arsenic (III) in the soil were observed to decrease. The interaction of arsenic with PSMP and PTFE resulted in this phenomenon, leading to a decrease of arsenic bioavailability in the soil. PSMP, PTFE, and arsenic reduced the abundance of Proteobacteria, increased the abundance of Chloroflexi and Acidobacteria, and inhibited soil urease, acid phosphatase, protease, dehydrogenase, and peroxidase activity via affecting the tertiary structure of the enzyme. PSMP, PTFE, and arsenic also reduced the available nitrogen and phosphorus content in the soil. Arsenic increased the soil organic matter content, whereas PSMP and PTFE reduced the organic matter content. Furthermore, microplastics inhibited the effects of arsenic on the microbial and chemical properties of the rhizosphere soil. This study revealed the effects of microplastic and arsenic pollution on rice rhizosphere microorganisms and nutrients, and elucidated the mechanism by which these pollutants retard crop growth in the designed growth medium.


Assuntos
Arsênio/toxicidade , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Arsênio/análise , Poluição Ambiental , Nitrogênio , Nutrientes , Oryza/crescimento & desenvolvimento , Plásticos , Rizosfera , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
18.
Neurol Sci ; 42(9): 3637-3646, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33433755

RESUMO

OBJECTIVES: To assess the quality of preclinical evidence for mesenchymal stromal cell (MSCs) therapy of amyotrophic lateral sclerosis (ALS), decide the effect size of MSCs treatment, and identify clinical parameters that associate with differences in MSCs effects. METHODS: A literature search identified studies of MSCs in animal models of ALS. Four main indicators (age of onset, disease progression deceleration, survival time, hazard ratio reduction) obtained through specific neurobehavioral assessment, and 14 relative clinical parameters were extracted for metaanalysis and systematic review. Subgroup analysis and metaregression were performed to explore sources of heterogeneity. RESULTS: A total of 25 studies and 41 independent treated arms were used for systematic review and metaanalysis. After adjusted by sensitivity analysis, the mean effect sizes were significantly improved by 0.28 for the age of onset, 0.25 for the disease progression deceleration, 0.54 for the survival time, and 0.48 for hazard ratio reduction. With further analysis, we demonstrated that both the clinical parameter of animal gender and immunosuppressive drug of cyclosporin A (CSA) had a close correlation with disease progression deceleration effect size. CONCLUSIONS: These results showed that MSCs transplantation was beneficial for neurobehavioral improvement in the treatment of ALS animal model and recommended that all potential reparative roles of MSCs postdelivery, should be carefully considered and fused to maximize the effectiveness of MSCs therapy in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Esclerose Lateral Amiotrófica/terapia , Modelos Animais de Doenças , Progressão da Doença
19.
J Hazard Mater ; 405: 124232, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33087286

RESUMO

Chlamydomonas reinhardtii plays a critical role in the biogeochemical cycling of arsenic (As) and purification of water bodies contaminated with As. We investigated the effects of microplastic pollution on the ability of C. reinhardtii to accumulate As. We revealed that different sized [100 nm (S) and 5 µm (L)] polystyrene microplastics (PSMP) at different concentrations (50 and 100 mg L-1) interacted with the phospholipid structure in C. reinhardtii. Dispersion forces disrupted the structure and function of membrane proteins, reducing the accumulation and efflux of As(III) and inhibiting the As(V)-As(III)-MMA-DMA detoxification process in C. reinhardtii cells. The maximum As accumulation rates of C. reinhardtii in the control groups, L50, L100, S50, and S100 treatments were 53.71, 50.95, 48.42, 43.83, and 39.11 µg g-1 h-1, respectively. Further, PSMPs and As(III) triggered "oxidative bursts" in cells, damaging cell membranes and reducing chlorophyll content and Rubisco activity. As a result, photosynthesis, respiration, and growth were inhibited. When compared with an absence of PSMP, the addition of L- (S-) sized PSMP to the As-containing solution would result in a lower (higher) impact on C. reinhardtii. Overall, this study demonstrated that microplastics significantly affect As accumulation in C. reinhardtii. Our results indicate that the critical role of this algal species in As cycling in earth's pedo- and hydrosphere may be impeded by microplastic pollution.


Assuntos
Arsênio , Chlamydomonas reinhardtii , Poluentes Químicos da Água , Arsênio/toxicidade , Água Doce , Microplásticos , Fotossíntese , Plásticos , Poluentes Químicos da Água/toxicidade
20.
Environ Sci Process Impacts ; 22(12): 2388-2397, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33206081

RESUMO

Polystyrene microplastics (PSMPs) are detrimental in aqueous environments. This study found that humus, mainly comprising humic acid (HA) and fulvic acid (FA), can facilitate the adsorption of As(iii) by PSMPs. The phenolic hydroxyl groups provided by HA contribute to the transport of As(iii). HA interacts with the PSMPs to form a π complex, providing more sites on the microplastics for As(iii) adsorption, while reducing the time required to reach adsorption equilibrium. Increased temperatures in aqueous environments destroy the hydrogen bonds contributing to the adsorption process, thus causing desorption. Increases in pH and ionic strength reduce the adsorption of As(iii) by increasing charge repulsion and microplastic agglomeration, and the co-existing NO3- and PO43- ions inhibit the removal of As(iii) in the solution. Our combined results indicate that the migration of PSMPs after As(iii) adsorption in the presence of HA and FA requires further research attention.


Assuntos
Arsenitos , Solo , Adsorção , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Microplásticos , Plásticos , Poliestirenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...