Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202405243, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861524

RESUMO

All-polymer solar cells have experienced rapid development in recent years by the emergence of polymerized small molecular acceptors (PSMAs). However, the strong chain entanglements of polymer donors (PDs) and polymer acceptors (PAs) decrease the miscibility of the resulting polymer mixtures, making it challenging to optimize the blend morphology. Herein, we designed three PAs, namely PBTPICm-BDD, PBTPICγ-BDD and PBTPICF-BDD, by smartly using a BDD unit as the polymerized unit to copolymerize with different Y-typed non-fullerene small molecular acceptors (NF-SMAs), thus achieving a certain degree of distortion and giving the polymer system enough internal space to reduce the entanglements of the polymer chains. Such effects increase the chances of the PD being interspersed into the acceptor material, which improve the solubility between the PD and PA. The PBTPICγ-BDD and PBTPICF-BDD displayed better miscibility with PBQx-TCl, leading to a well optimized morphology. As a result, high power conversion efficiencies (PCEs) of 17.50 % and 17.17 % were achieved for PBQx-TCl : PBTPICγ-BDD and PBQx-TCl : PBTPICF-BDD devices, respectively. With the addition of PYFT-o as the third component into PBQx-TCl : PBTPICγ-BDD blend to further extend the absorption spectral coverage and finely tune microstructures of the blend morphology, a remarkable PCE of 18.64 % was realized finally.

2.
Adv Mater ; 36(6): e2307709, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38011852

RESUMO

Minimizing interfacial charged traps in perovskite films is crucial for reducing the non-radiative recombination and improving device performance. In this study, succinic acid (SA) derivatives varying active sites and spatial configurations are designed to modulate defects and crystallization in perovskite film. The SA derivative with two symmetric Br atoms, dibromosuccinic acid (DBSA), exhibits the optimal spatial arrangement for defect passivation. Experimental and theoretical results indicate that the carboxyl group and atomic Br in DBSA synergistically interact with the under-coordinated Pb2+ . Moreover, the strong electronegativity of Br efficiently stabilizes the formamidinium cation via electrostatic interaction. Consequently, film quality is significantly improved and non-radiative recombination is markedly depressed, resulting in a photoluminesence lifetime of exceeding 4 µs of and a carrier diffusion length of 3 µm. An exceptional efficiency of 25.41% (certified at 25.00%) along with a high fill factor of 84.39% and excellent long-term operational stability have been achieved finally.

3.
Adv Mater ; 36(11): e2308216, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38100817

RESUMO

The success of Y6-type nonfullerene small molecule acceptors (NF-SMAs) in polymer solar cells (PSCs) can be attributed to their unique honeycomb stacking style, which leads to favorable thin-film morphologies. The intermolecular interactions related to the crystallization tendency of these NF-SMAs is closely governed by their electron accepting end groups. For example, the high performance Y6 derivative L8-BO (BTP-4F) presents three types of stacking modes in contrast to two stacking modes of Y6. Hence, it is ultimately interesting to obtain more insight on the packing properties and the preferences influenced by chemical modifications such as end group engineering. This work designs and synthesizes asymmetric and symmetric L8-BO derivatives with brominated end groups and explores the stacking preferences in various modes. The asymmetric BTP-3FBr displays an optimized crystallization tendency and thin film morphology, leading to a decent power conversion efficiency (PCE) of 18.34% in binary devices and a top PCE of 19.32% in ternary devices containing 15 wt% IDIC as the second acceptor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...