Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(12): e33220, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39021916

RESUMO

Seahorses are increasingly recognized for their nutritional potential, which underscores the necessity for comprehensive biochemical analyses. This study aims to investigate the fatty acid and amino acid compositions of eight seahorse species, including both genders of Hippocampus trimaculatus, Hippocampus kelloggi, Hippocampus abdominalis, and Hippocampus erectus, to evaluate their nutritional value. We employed Gas Chromatography-Mass Spectrometry (GC-MS) and High-Performance Liquid Chromatography (HPLC) to analyze the fatty acid and amino acid profiles of the seahorse species. GC-MS was used to detect 34 fatty acid methyl esters, while HPLC provided detailed amino acid profiles. GC-MS analysis demonstrated high precision with relative standard deviations (RSDs) generally below 2.53 %, satisfactory repeatability (RSDs from 6.55 % to 8.73 %), and stability (RSDs below 2.82 %). Recovery rates for major fatty acids ranged from 98.73 % to 109.12 %. HPLC analysis showed strong separation of amino acid profiles with theoretical plate numbers exceeding 5000. Precision tests yielded RSDs below 1.23 %, with reproducibility and stability tests showing RSDs below 2.73 % and 2.86 %, respectively. Amino acid recovery rates ranged from 97.58 % to 104.66 %. Nutritional analysis revealed significant variations in fatty acid content among the species. Female H. erectus showed higher levels of hexadecanoic acid and saturated fatty acids, while male H. abdominalis had lower concentrations of n-3 full cis 4,7,10,13,16,19-docosahexaenoic acid (DHA). Total lipid yields varied from 3.2491 % to 12.3175 %, with major fatty acids constituting 17.9717 %-74.6962 % of total lipids. In conclusion, this study provides essential insights into the fatty acid and amino acid composition of seahorses, supporting their potential as valuable dietary supplements. The differences between genders in specific fatty acids suggest a nuanced nutritional profile that could be exploited for targeted dietary applications. Further research is needed to explore the seasonal and environmental variations affecting seahorse biochemical composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...