Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 4(7): e1105, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39040024

RESUMO

Interactions between proteins and small molecules or nucleic acids play a pivotal role in numerous biological processes critical for human health and are fundamental for advancing our understanding of biological systems. Proteins are the workhorses of the cell, executing various functions ranging from catalyzing biochemical reactions to transmitting signals within the body. Small molecules, including drugs and metabolites, can modulate protein activity, thereby impacting cellular processes and disease pathways. Similarly, nucleic acids, such as DNA and RNA, regulate protein synthesis and function through intricate interactions. Understanding these interactions is crucial for drug discovery and development and can shed light on gene regulation, transcriptional control, and RNA processing, providing insights into genetic diseases and developmental disorders. Moreover, studying protein-small molecule and protein-nucleic acid interactions enhances our comprehension of fundamental biological mechanisms. A wide array of methods to study these interactions range in cost, sensitivity, materials usage, throughput, and complexity. Notably in the last decade, new techniques have been developed that enhance our understanding of these interactions. In this review, we aim to summarize the new state-of-the-art methods for detecting interactions between proteins and small molecules or nucleic acids, as well as discuss older methods that still hold value today. © 2024 Wiley Periodicals LLC.


Assuntos
Ácidos Nucleicos , Proteínas , Proteínas/metabolismo , Proteínas/química , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química , Humanos , RNA/metabolismo , RNA/genética , Ligação Proteica , DNA/metabolismo , DNA/química , DNA/genética
2.
J Glob Health ; 14: 04144, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39024622

RESUMO

Background: As the global population ages, the burden of cancer is increasing. We aimed to assess the impact of population ageing on cancer-related disability-adjusted life years (DALYs). Methods: We used the decomposition method to estimate the impact of ageing, population growth, and epidemiological change on cancer-related DALYs from 1990 to 2019, stratified by 204 countries/territories and by their sociodemographic index (SDI). This approach separates the net effect of population ageing from population growth and change in age-specific DALY rates. Results: Cancer-related DALYs among individuals aged ≥65 years increased by 95.14% between 1990 (52.25 million) and 2019 (101.96 million). Population growth was the main contributor to cancer-related DALYs (92.38 million, attributed proportion: 60.91%), followed by population ageing (41.38 million, 27.28%). Cancer-related DALYs attributed to population ageing followed a bell-shaped pattern when stratified by SDI, meaning they peaked in middle-SDI countries. Cancer-related DALYs attributed to ageing increased in 171 and decreased in 33 countries/territories. The top three cancer types with the highest increase in the absolute number of cancer-related DALYs associated with ageing were tracheal, bronchus, and lung (8.72 million); stomach (5.06 million); and colorectal (4.28 million) cancers, while the attributed proportion of DALYs was the highest in prostate (44.75%), pancreatic (40.93%), and non-melanoma skin (38.03%) cancers. Conclusions: Population ageing contributed to global cancer-related DALYs, revealing a bell-shaped pattern when stratified by socioeconomic development, affecting middle-SDI countries the most. To respond to the growing ageing population and reduce cancer-related DALYs, it is necessary to allocate health care resources and prioritize interventions for older adults.


Assuntos
Anos de Vida Ajustados por Deficiência , Saúde Global , Neoplasias , Humanos , Neoplasias/epidemiologia , Idoso , Saúde Global/estatística & dados numéricos , Envelhecimento , Masculino , Dinâmica Populacional , Feminino , Idoso de 80 Anos ou mais
3.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675651

RESUMO

Outer membrane vesicles (OMVs) are attractive for biomedical applications based on their intrinsic properties in relation to bacteria and vesicles. However, their widespread use is hampered by low yields and purities. In this study, EVscore47 multifunctional chromatography microspheres were synthesized and used to efficiently isolate functional OMVs from Escherichia coli. Through this technology, OMV loss can be kept to a minimum, and OMVs can be harvested using EVscore47 at 11-fold higher yields and ~13-fold higher purity than those achieved by means of ultracentrifugation. Based on the results presented here, we propose a novel EVscore47-based isolation of OMVs that is fast and scalable.


Assuntos
Escherichia coli , Vesículas Extracelulares , Microesferas , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Ultracentrifugação , Cromatografia/métodos
4.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168343

RESUMO

Despite recent advances in the mechanism of oxidized DNA activating NLRP3, the molecular mechanism and consequence of oxidized DNA associating with NLRP3 remains unknown. Cytosolic NLRP3 binds oxidized DNA which has been released from the mitochondria, which subsequently triggers inflammasome activation. Human glycosylase (hOGG1) repairs oxidized DNA damage which inhibits inflammasome activation. The fold of NLRP3 pyrin domain contains amino acids and a protein fold similar to hOGG1. Amino acids that enable hOGG1 to bind and cleave oxidized DNA are conserved in NLRP3. We found NLRP3 could bind and cleave oxidized guanine within mitochondrial DNA. The binding of oxidized DNA to NLRP3 was prevented by small molecule drugs which also inhibit hOGG1. These same drugs also inhibited inflammasome activation. Elucidating this mechanism will enable design of drug memetics that treat inflammasome pathologies, illustrated herein by NLRP3 pyrin domain inhibitors which suppressed interleukin-1ß (IL-1ß) production in macrophages. One-Sentence Summary: NLRP3 cleaves oxidized DNA and small molecule drug binding inhibits inflammasome activation.

5.
J Med Chem ; 65(11): 8040-8061, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35612499

RESUMO

Calothrixin A (CAA) is a dual Topo I and II inhibitor but exhibits poor antiproliferative activities and water solubility. Herein, a library of novel CAA analogues was synthesized. Among them, compound F16 exhibited superior water solubility (>5 mg/mL) as compared to CAA (<5 µg/mL). The mechanism of action studies confirmed that F16 acted as a dual Topo I and II poison. Furthermore, F16 displayed potent antiproliferative activities against high Topo I and II expression cell lines A375 and HCT116, with IC50 values of 20 and 50 nM, respectively. In xenograft models, F16 reduced the tumor growth at a dose of 10 or 20 mg/kg without apparent effect on the mouse weight, while the clinically used Topo II inhibitor VP-16 dramatically reduced the mouse weight. Collectively, our data demonstrated that F16 could be a promising lead for the development of novel dual Topo I and II antitumor agents.


Assuntos
Antineoplásicos , Produtos Biológicos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Alcaloides Indólicos , Camundongos , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/uso terapêutico , Inibidores da Topoisomerase II/farmacologia , Água/metabolismo
6.
Mol Pharm ; 18(7): 2622-2633, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34165313

RESUMO

Cancer metastasis is the major cause of cancer-related death; therefore, achieving suppression of tumor metastasis is a long-sought goal in cancer therapy. As the premetastatic niche acts as a prerequisite for tumor metastasis, it serves as an effective target for metastasis suppression. This study tests the feasibility of inhalable porous microspheres loaded with two premetastatic niche modulation agents, metformin and docosahexaenoic acid, as orthotopic delivery carriers for the reversion of lung premetastatic microenvironments and targeted suppression of tumor lung metastasis. The microspheres were prepared via an improved emulsion-solvent evaporation method and exhibit an excellent lung deposition, leading to significant inhibition of circulating tumor cells (CTCs)-endothelial cells adhesion, reduction of vascular permeability, and suppression of adhesion protein expression in lung premetastatic microenvironments. As a result, inhalable microspheres can prevent tumor lung metastasis formation excellently in vivo. Overall, this study proved that the encapsulation of metformin and docosahexaenoic acid in inhalable microspheres could be a promising strategy for tumor lung metastasis inhibition via orthotopically modulating premetastatic niche in the lungs.


Assuntos
Neoplasias da Mama/prevenção & controle , Ácidos Docosa-Hexaenoicos/química , Hipoglicemiantes/farmacologia , Neoplasias Pulmonares/prevenção & controle , Metformina/farmacologia , Microesferas , Administração por Inalação , Animais , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Metformina/administração & dosagem , Metformina/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ratos Sprague-Dawley , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Eur J Med Chem ; 214: 113225, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33550182

RESUMO

Pyruvate dehydrogenase kinases (PDKs) are promising therapeutic targets that have received increasing attentions in cancer metabolism. In this paper, we report the synthesis and biological evaluation of a series of novel dichloroacetophenones as potent PDKs inhibitors. Structure-activity relationship analysis enabled us to identify a potent compound 6u, which inhibited PDKs with an EC50 value of 0.09 µM, and reduced various cancer cells proliferation with IC50 values ranging from 1.1 to 3.8 µM, while show weak effect against non-cancerous L02 cell (IC50 > 10 µM). In the A375 xenograft model, 6u displayed an obvious antitumor activity at a dose of 5 mg/kg, but with no negative effect to the mice weight. Molecular docking suggested that 6u formed direct hydrogen bond interactions with Ser75 and Gln61 in PDK1, and meanwhile the aniline skeleton in 6u was sandwiched by the conserved hydrophobic residues Phe78 and Phe65, which contribute to the biochemical activity improvement. Moreover, 6u induced A375 cell apoptosis and cell arrest in G1 phase, and inhibited cancer cell migration. In addition, 6u altered glucose metabolic pathway in A375 cell by decreasing lactate formation and increasing ROS production and OCR consumption, which could serve as a potential modulator to reprogram the glycolysis pathway in cancer cell.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , ômega-Cloroacetofenona/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas , ômega-Cloroacetofenona/síntese química , ômega-Cloroacetofenona/química
8.
J Biosci ; 43(5): 985-1000, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30541958

RESUMO

Retinal injury plays a leading role in the onset of visual impairment. Current forms of treatment are not able to ameliorate scarring, cell death and tissue and axon regeneration. Recently, microRNA-216a (miR-216a) has been reported to regulate snx5, a novel notch signalling pathway component during retinal development. This study aims to elucidate the role of miR-216a in yttrium aluminium garnet (YAG) laser-induced retinal injury by targeting glial cell line-derived neurotrophic factor (GDNF) via GDNF/GDNF family neurotrophic factor receptor α1 (GFRα1)/rearranged during transfection (RET) signalling pathway. Wistar male rats were first randomly assigned into control and model groups. Immunohistochemistry was performed to detect the GDNF positive expression rate and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) staining for apoptotic index (AI) of retinal tissue. Retinal neurons were divided into normal, blank, negative control (NC), miR-216a mimic, miR-216a inhibitor, siRNA-GDNF and miR-216a inhibitor?siRNA-GDNF groups. Dual luciferase reporter assay was conducted in order to identify the targeting relationship between GDNF and miR-216a. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot were used for the analysis of mRNA and protein levels of miR-216a and related genes. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine cell proliferation and flow cytometry was used to observe cell cycle and apoptosis. Results show that the model group had an increased GDNF positive rate, AI of retinal tissue and mRNA and protein levels of cellular oncogene fos (c-fos), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), GDNF, GFRα1 and bcl-2-associated X protein (bax), declined miR-216a level and mRNA and protein levels of RET and bcl-2 compared with the control group. GDNF was verified as the target gene for miR-216a. Compared with the blank and NC groups, the miR-216a mimic and siRNA-GDNF groups had higher mRNA and protein levels of c-fos, VEGF and bax, cell number in the G1 phase and increased cell apoptosis but reduced BDNF, GDNF, GFRα1, RET and bcl-2 expression, cell proliferation and cell numbers in the S phase, while the opposite trend was observed in the miR-216a inhibitor group. Taken together, our findings demonstrate that elevated GDNF levels can reduce the retinal injury, whereby down-regulated miR-216a aggravates the YAG laser-induced retinal injury by targeting the GDNF level through the GDNF/ GFRα1/RET signalling pathway.


Assuntos
Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Lasers de Estado Sólido/efeitos adversos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-ret/genética , Retina/metabolismo , Degeneração Retiniana/genética , Animais , Antagomirs/genética , Antagomirs/metabolismo , Apoptose , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ciclo Celular/genética , Proliferação de Células , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/antagonistas & inibidores , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Masculino , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Retina/lesões , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...