Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 173(Pt 2): 113488, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803808

RESUMO

Hongqu rice wine, a famous traditional fermented alcoholic beverage, is brewed with traditional Hongqu (mainly including Gutian Qu and Wuyi Qu). This study aimed to compare the microbial communities and metabolic profiles in the traditional brewing of Hongqu rice wines fermented with Gutian Qu and Wuyi Qu. Compared with Hongqu rice wine fermented with Wuyi Qu (WY), Hongqu rice wine fermented with Gutian Qu (GT) exhibited higher levels of biogenic amines. The composition of volatile flavor components of Hongqu rice wine brewed by different fermentation starters (Gutian Qu and Wuyi Qu) was obviously different. Among them, ethyl acetate, isobutanol, 3-methylbutan-1-ol, ethyl decanoate, ethyl palmitate, ethyl oleate, nonanoic acid, 4-ethylguaiacol, 5-pentyldihydro-2(3H)-furanone, ethyl acetate, n-decanoic acid etc. were identified as the characteristic aroma-active compounds between GT and WY. Microbiome analysis based on high-throughput sequencing of full-length 16S rDNA/ITS-5.8S rDNA amplicons revealed that Lactococcus, Leuconostoc, Pseudomonas, Serratia, Enterobacter, Weissella, Saccharomyces, Monascus and Candida were the predominant microbial genera during the traditional production of GT, while Lactococcus, Lactobacillus, Leuconostoc, Enterobacter, Kozakia, Weissella, Klebsiella, Cronobacter, Saccharomyces, Millerozyma, Monascus, Talaromyces and Meyerozyma were the predominant microbial genera in the traditional fermentation of WY. Correlation analysis revealed that Lactobacillus showed significant positive correlations with most of the characteristic volatile flavor components and biogenic amines. Furthermore, bioinformatical analysis based on PICRUSt revealed that microbial enzymes related to biogenic amines synthesis were more abundant in GT than those in WY, and the enzymes responsible for the degradation of biogenic amines were less abundant in GT than those in WY. Collectively, this study provides important scientific data for enhancing the flavor quality of Hongqu rice wine, and lays a solid foundation for the healthy and sustainable development of Hongqu rice wine industry.


Assuntos
Microbiota , Vinho , Vinho/análise , Fungos , Aminas Biogênicas/análise , Metaboloma , DNA Ribossômico/análise , DNA Ribossômico/metabolismo
2.
bioRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808692

RESUMO

Developing therapeutic strategies against COVID-19 has gained widespread interest given the likelihood that new viral variants will continue to emerge. Here we describe one potential therapeutic strategy which involves targeting members of the glutaminase family of mitochondrial metabolic enzymes (GLS and GLS2), which catalyze the first step in glutamine metabolism, the hydrolysis of glutamine to glutamate. We show three examples where GLS expression increases during coronavirus infection of host cells, and another in which GLS2 is upregulated. The viruses hijack the metabolic machinery responsible for glutamine metabolism to generate the building blocks for biosynthetic processes and satisfy the bioenergetic requirements demanded by the 'glutamine addiction' of virus-infected host cells. We demonstrate how genetic silencing of glutaminase enzymes reduces coronavirus infection and that newer members of two classes of small molecule allosteric inhibitors targeting these enzymes, designated as SU1, a pan-GLS/GLS2 inhibitor, and UP4, which is specific for GLS, block viral replication in mammalian epithelial cells. Overall, these findings highlight the importance of glutamine metabolism for coronavirus replication in human cells and show that glutaminase inhibitors can block coronavirus infection and thereby may represent a novel class of anti-viral drug candidates. Teaser: Inhibitors targeting glutaminase enzymes block coronavirus replication and may represent a new class of anti-viral drugs.

3.
Trends Cancer ; 7(8): 790-804, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34020912

RESUMO

Glutamine metabolism is reprogrammed during tumorigenesis and has been investigated as a promising target for cancer therapy. However, efforts to drug this process are confounded by the intrinsic metabolic heterogeneity and flexibility of tumors, as well as the risk of adverse effects on the anticancer immune response. Recent research has yielded important insights into the mechanisms that determine the tumor and the host immune responses to pharmacological perturbation of glutamine metabolism. Here, we discuss these findings and suggest that, collectively, they point toward patient stratification and drug combination strategies to maximize the efficacy of glutamine metabolism inhibitors as cancer therapeutics.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Glutamina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Animais , Antimetabólitos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Benzenoacetamidas/farmacologia , Benzenoacetamidas/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/imunologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Glutaminase/antagonistas & inibidores , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Estresse Oxidativo/efeitos dos fármacos , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
4.
BMC Genomics ; 21(1): 131, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32033524

RESUMO

BACKGROUND: Seashore paspalum (Paspalum vaginatum), a halophytic warm-seasoned perennial grass, is tolerant of many environmental stresses, especially salt stress. To investigate molecular mechanisms underlying salinity tolerance in seashore paspalum, physiological characteristics and global transcription profiles of highly (Supreme) and moderately (Parish) salinity-tolerant cultivars under normal and salt stressed conditions were analyzed. RESULTS: Physiological characterization comparing highly (Supreme) and moderately (Parish) salinity-tolerant cultivars revealed that Supreme's higher salinity tolerance is associated with higher Na+ and Ca2+ accumulation under normal conditions and further increase of Na+ under salt-treated conditions (400 mM NaCl), possibly by vacuolar sequestration. Moreover, K+ retention under salt treatment occurs in both cultivars, suggesting that it may be a conserved mechanism for prevention of Na+ toxicity. We sequenced the transcriptome of the two cultivars under both normal and salt-treated conditions (400 mM NaCl) using RNA-seq. De novo assembly of about 153 million high-quality reads and identification of Open Reading Frames (ORFs) uncovered a total of 82,608 non-redundant unigenes, of which 3250 genes were identified as transcription factors (TFs). Gene Ontology (GO) annotation revealed the presence of genes involved in diverse cellular processes in seashore paspalum's transcriptome. Differential expression analysis identified a total of 828 and 2222 genes that are responsive to high salinity for Supreme and Parish, respectively. "Oxidation-reduction process" and "nucleic acid binding" are significantly enriched GOs among differentially expressed genes in both cultivars under salt treatment. Interestingly, compared to Parish, a number of salt stress induced transcription factors are enriched and show higher abundance in Supreme under normal conditions, possibly due to enhanced Ca2+ signaling transduction out of Na+ accumulation, which may be another contributor to Supreme's higher salinity tolerance. CONCLUSION: Physiological and transcriptome analyses of seashore paspalum reveal major molecular underpinnings contributing to plant response to salt stress in this halophytic warm-seasoned perennial grass. The data obtained provide valuable molecular resources for functional studies and developing strategies to engineer plant salinity tolerance.


Assuntos
Paspalum/genética , Tolerância ao Sal/genética , Cálcio/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Paspalum/metabolismo , Bombas de Próton/genética , Bombas de Próton/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
New Phytol ; 225(5): 2094-2107, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31618451

RESUMO

Odd-numbered primary alcohols are components of plant cuticular wax, but their biosynthesis remains unknown. We isolated a rice wax crystal-sparse leaf 5 (WSL5) gene using a map-based cloning strategy. The function of WSL5 was illustrated by overexpression and knockout in rice, heterologous expression in Arabidopsis and transient expression in tobacco leaves. WSL5 is predicted to encode a cytochrome P450 family member CYP96B5. The wsl5 mutant lacked crystalloid platelets on the surface of cuticle membrane, and its cuticle membrane was thicker than that of the wild-type. The wsl5 mutant is more tolerant to drought stress. The load of C23 -C33 alkanes increased, whereas the C29 primary alcohol reduced significantly in wsl5 mutant and WSL5 knockout transgenic plants. Overexpression of WSL5 increased the C29 primary alcohol and decreased alkanes in rice leaves. Heterologous expression of WSL5 increased the C29 primary alcohol and decreased alkanes, secondary alcohol, and ketone in Arabidopsis stem wax. Transient expression of WSL5 in tobacco leaves also increased the production C29 primary alcohol. WSL5 catalyzes the terminal hydroxylation of alkanes, yielding odd-numbered primary alcohols, and is involved in the formation of epidermal wax crystals on rice leaf, affecting drought sensitivity.


Assuntos
Oryza , Álcoois , Alcanos , Sistema Enzimático do Citocromo P-450/genética , Família , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ceras
6.
Biochemistry ; 58(7): 875-882, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30638014

RESUMO

The African trypanosome, Trypanosoma brucei, is the causative agent of human African trypanosomiasis (HAT). African trypanosomes are extracellular parasites that possess a single flagellum that imparts a high degree of motility to the microorganisms. In addition, African trypanosomes show significant metabolic and structural adaptation to environmental conditions. Analysis of the ways that environmental cues affect these organisms generally requires rapid perfusion experiments in combination with single-cell imaging, which are difficult to apply under conditions of rapid motion. Microfluidic devices have been used previously as a strategy for trapping small motile cells in a variety of organisms, including trypanosomes; however, in the past, such devices required individual fabrication in a cleanroom, limiting their application. Here we demonstrate that a commercial microfluidic device, typically used for bacterial trapping, can trap bloodstream and procyclic form trypanosomes, allowing for rapid buffer exchange via perfusion. As a result, time-lapse single-cell microscopy images of these highly motile parasites were acquired during environmental variations. Using these devices, we have been able to perform and analyze perfusion-based single-cell tracking experiments of the responses of the parasite to changes in glucose availability, which is a major step in resolving the mechanisms of adaptation of kinetoplasts to their individual biological niches; we demonstrate utility of this tool for making measurements of procyclic form trypanosome intracellular glucose levels as a function of changes in extracellular glucose concentrations. These experiments demonstrate that cytosolic glucose equilibrates with external conditions as fast as, or faster than, the rate of solution exchange in the instrument.


Assuntos
Dispositivos Lab-On-A-Chip , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Trypanosoma brucei brucei/fisiologia , Fluoresceína , Glucose/metabolismo , Análise de Célula Única , Imagem com Lapso de Tempo/instrumentação , Imagem com Lapso de Tempo/métodos , Trypanosoma brucei brucei/citologia
7.
mSphere ; 3(5)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30381351

RESUMO

The African trypanosome has evolved mechanisms to adapt to changes in nutrient availability that occur during its life cycle. During transition from mammalian blood to insect vector gut, parasites experience a rapid reduction in environmental glucose. Here we describe how pleomorphic parasites respond to glucose depletion with a focus on parasite changes in energy metabolism and growth. Long slender bloodstream form parasites were rapidly killed as glucose concentrations fell, while short stumpy bloodstream form parasites persisted to differentiate into the insect-stage procyclic form parasite. The rate of differentiation was lower than that triggered by other cues but reached physiological rates when combined with cold shock. Both differentiation and growth of resulting procyclic form parasites were inhibited by glucose and nonmetabolizable glucose analogs, and these parasites were found to have upregulated amino acid metabolic pathway component gene expression. In summary, glucose transitions from the primary metabolite of the blood-stage infection to a negative regulator of cell development and growth in the insect vector, suggesting that the hexose is not only a key metabolic agent but also an important signaling molecule.IMPORTANCE As the African trypanosome Trypanosoma brucei completes its life cycle, it encounters many different environments. Adaptation to these environments includes modulation of metabolic pathways to parallel the availability of nutrients. Here, we describe how the blood-dwelling life cycle stages of the African trypanosome, which consume glucose to meet their nutritional needs, respond differently to culture in the near absence of glucose. The proliferative long slender parasites rapidly die, while the nondividing short stumpy parasite remains viable and undergoes differentiation to the next life cycle stage, the procyclic form parasite. Interestingly, a sugar analog that cannot be used as an energy source inhibited the process. Furthermore, the growth of procyclic form parasite that resulted from the event was inhibited by glucose, a behavior that is similar to that of parasites isolated from tsetse flies. Our findings suggest that glucose sensing serves as an important modulator of nutrient adaptation in the parasite.


Assuntos
Adaptação Fisiológica , Glucose/metabolismo , Transdução de Sinais , Estresse Fisiológico , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo , Metabolismo Energético , Estágios do Ciclo de Vida
8.
PLoS Negl Trop Dis ; 12(5): e0006523, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29851949

RESUMO

The bloodstream lifecycle stage of the kinetoplastid parasite Trypanosoma brucei relies solely on glucose metabolism for ATP production, which occurs in peroxisome-like organelles (glycosomes). Many studies have been conducted on glucose uptake and metabolism, but none thus far have been able to monitor changes in cellular and organellar glucose concentration in live parasites. We have developed a non-destructive technique for monitoring changes in cytosolic and glycosomal glucose levels in T. brucei using a fluorescent protein biosensor (FLII12Pglu-700µÎ´6) in combination with flow cytometry. T. brucei parasites harboring the biosensor allowed for observation of cytosolic glucose levels. Appending a type 1 peroxisomal targeting sequence caused biosensors to localize to glycosomes, which enabled observation of glycosomal glucose levels. Using this approach, we investigated cytosolic and glycosomal glucose levels in response to changes in external glucose or 2-deoxyglucose concentration. These data show that procyclic form and bloodstream form parasites maintain different glucose concentrations in their cytosol and glycosomes. In procyclic form parasites, the cytosol and glycosomes maintain indistinguishable glucose levels (3.4 ± 0.4mM and 3.4 ± 0.5mM glucose respectively) at a 6.25mM external glucose concentration. In contrast, bloodstream form parasites maintain glycosomal glucose levels that are ~1.8-fold higher than the surrounding cytosol, equating to 1.9 ± 0.6mM in cytosol and 3.5 ± 0.5mM in glycosomes. While the mechanisms of glucose transport operating in the glycosomes of bloodstream form T. brucei remain unresolved, the methods described here will provide a means to begin to dissect the cellular machinery required for subcellular distribution of this critical hexose.


Assuntos
Citometria de Fluxo/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Glucose/metabolismo , Estágios do Ciclo de Vida , Microcorpos/metabolismo , Trypanosoma brucei brucei/fisiologia , Animais , Transporte Biológico , Técnicas Biossensoriais/métodos , Citosol/metabolismo , Microcorpos/química , Proteínas de Protozoários/metabolismo
9.
Chem Commun (Camb) ; 53(62): 8735-8738, 2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28726862

RESUMO

A new drug delivery strategy was investigated for the development of potent anti-parasitic compounds against Trypanosoma brucei, the causative agent of African sleeping sickness. Thus, potent in vitro hexokinase inhibitors were rendered cytotoxic by appending a tripeptide peroxosomal targeting sequence that facilitated delivery of the molecular cargo to the appropriate organelle in the parasite.

10.
Biochem Biophys Rep ; 4: 33-38, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26393238

RESUMO

Incubation of African trypanosomes with the lectin concanavalin A (conA) leads to alteration in cellular DNA content, DNA degradation, and surface membrane blebbing. Here, we report the generation and characterization of a conA-refractory Trypanosoma brucei line. These insect stage parasites were resistant to conA killing, with a mediun lethal dose at least 50-fold greater than the parental line. Fluorescence-based experiments revealed that the resistant cells bound less lectin when compared to the parental line. Western blotting and mass spectrometry confirmed that the resistant line lacked an N-glycan required for conA binding on the cellular receptors, EP procyclin proteins. The failure to N-glycosylate the EP procyclins was not the consequence of altered N-glycan precursor biosynthesis, as another glycosylated protein (Fla1p) was normally modified. These findings support the likelihood that resistance to conA was a consequence of failure to bind the lectin trigger.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...