Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 925: 171749, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494009

RESUMO

Historically, dissolved organic nitrogen (DON) has not been characterized in the nitrogen profiles of most estuaries despite its significant contribution to total nitrogen and projected increase in loading. The characterization of dissolved inorganic nitrogen (DIN) and DON processing from groundwater to surface water also remains unconstrained. This study attempts to fill in these knowledge gaps by quantifying the DON pool and potential sources in a semiarid, low inflow estuary (Baffin Bay, Texas) using stable isotope techniques. High NO3- and DON concentrations, and high δ15N-NH4+ (+55.0 ± 56.7 ‰), δ15N-NO3- (+23.9 ± 8.6 ‰) and δ15N-DON (+22.3 ± 6.5 ‰) were observed in groundwaters of a septic-influenced estuarine area, indicating coupled septic contamination and nitrification/denitrification. In contrast, groundwater of an undeveloped area provided evidence of inundation by bay water through high NH4+ concentrations and δ15N-NH4+ (+8.4 ± 3.0 ‰) resembling estuary porewater. NH4+ was the dominant nitrogen species in porewater of both areas and δ15N-NH4+ indicated production via organic nitrogen mineralization and dissimilatory nitrate reduction to ammonium. Surface water had similar nitrogen profiles (DON constituted ∼98 % of dissolved nitrogen pool) and potential source contributions, despite distinct nitrogen processing and profiles found in each water table. This was attributed to low nitrogen removal rates and prolonged mixing associated with long residence time. This study emphasizes the importance of DON in a low-inflow estuary and the isotopic approach to comprehensively examine both inorganic and organic N processing and sources serving as a guide to investigate N cycling in high DON estuaries globally.

2.
Environ Pollut ; 343: 123152, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104759

RESUMO

Organic nitrogen (ON) has been excluded in the majority of atmospheric N studies. However, dissolved organic nitrogen (DON) deposition influences coastal water quality and primary production creating an urgent need for comprehensive atmospheric ON characterization, especially in coastal airsheds. This study measured the concentration and isotopic composition of rainwater DON (δ15N-DON) and applied stable isotope mixing models to determine the ON emission source apportionments in a small-sized coastal city. The DON concentration averaged 10.6 ± 7.6 µM (n = 42), which was 29% of the total dissolved nitrogen in rainwater and produced a deposition flux of 1.5 kg N·ha-1·yr-1. The average rainwater δ15N-DON value was 8.3 ± 5.3‰ and isotope mixing model results suggested vehicles as a dominant source, overall contributing 35 ± 15% of ON emissions, followed by marine emissions (24 ± 16%), organic amines (18 ± 11%), organic nitrates (17 ± 11%), and biomass burning (8 ± 3%). Although secondary ON formations (i.e., organic amines and nitrates) had less contributions than primary emission sources (i.e., vehicles, marine, and biomass burning), it can be significant and rival primary emissions when the fertilizer application started. Our results fill knowledge gaps of ON wet deposition and emission sources in small-sized coastal cities and inform future atmospheric N mitigation strategies and coastal watershed restoration plans in similar regions. We call for further research determining the isotopic composition of ON emission sources and fractionation associated with primary emission and secondary formation in anticipation of creating a similar isotope-based foundation that has been used for decades to investigate inorganic nitrogen emissions.


Assuntos
Nitratos , Nitrogênio , Nitrogênio/análise , Nitratos/análise , Isótopos , Biomassa , Aminas , Monitoramento Ambiental/métodos , Isótopos de Nitrogênio/análise , China
3.
Sci Total Environ ; 798: 149009, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34325146

RESUMO

Rainwater chemistry of extreme rain events is not well characterized. This is despite an increasing trend in intensity and frequency of extreme events and the potential excess loading of elements to ecosystems that can rival annual loading. Thus, an assessment of the loading imposed by hurricane/tropical storm (H/TS) can be valuable for future resiliency strategies. Here the chemical characteristics of H/TS and normal rain (NR) in the US from 2008 to 2019 were determined from available National Atmospheric Deposition Program (NADP) data by correlating NOAA storm tracks with NADP rain collection locations. It found the average pH of H/TS (5.37) was slightly higher (p < 0.05) than that of NR (5.12). On average, H/TS events deposited 14% of rain volume during hurricane season (May to October) at affected collection sites with a maximum contribution reaching 47%. H/TS events contributed a mean of 12% of Ca2+, 22% of Mg2+, 18% of K+, 25% of Na+, 7% of NH4+, 6% of NO3-, 25% of Cl- and 11% of SO42- during hurricane season with max loading of 77%, 62%, 94%, 65%, 39%, 34%, 64% and 60%, respectively, which can lead to ecosystems exceeding ion-specific critical loads. Four potential sources (i.e., marine, soil dust, agriculture and industry/fossil fuel) were indicated by PCA. The positive matrix factorization (PMF) suggested Mg2+, Na+ and Cl- were primarily marine-originated in both event types, while 36% more sea-salt Ca2+ and 33% more sea-salt SO42- were deposited during H/TS. Agriculture and industry/fossil fuel were the main sources of NH4+ and NO3-, respectively, in both rain event types. However the NH4+ contribution from industry/fossil fuel increased by 13% during H/TS indicating a potential vehicle source associated with emergency evacuations. This work provides a comprehensive assessment of the rainwater chemistry of H/TS and insight to expected ecosystem loading for future extreme events.


Assuntos
Poluentes Atmosféricos , Tempestades Ciclônicas , Poluentes Atmosféricos/análise , Ecossistema , Monitoramento Ambiental , Chuva , Estações do Ano
4.
Chemosphere ; 270: 128666, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33097234

RESUMO

The collapse of dense algal blooms is identified as a significant source of methane (CH4) emissions. When flocculation is used for algae removal, algal carbon is often turned into CH4 and carbon dioxide (CO2). Here, we established a "bio-pump" to control algal blooms and reduce greenhouse gas (GHG) emissions by the introduction of submerged macrophytes to the aquatic ecosystem and combination of flocculation and capping. The results suggested that this strategy contributed to an approximately 98% algae removal and sustainably improved dissolved oxygen (DO) in the water and sediment after the 40-day incubation. The aerobic condition at the sediment-water interface and deeper oxygen penetration in the sediment inhibited the abundance of microorganisms related to anaerobic CH4 production, then changed the metabolic pathway and fate of algal carbon. After the 40-day incubation, compared with flocculation-capping treatments, the bio-pump reduced 69.07% CH4 and 77.57% CO2 emissions, which was jointly contributed by the inhibition of anaerobic CH4 production, aerobic oxidation of CH4 and carbon sequestration of submerged macrophytes. This was also demonstrated from the finding of a decrease in methyl coenzyme M reductase (mcrA) gene, an increase in particulate methane monooxygenase (pmoA) gene and the absorption of 13C-labeled from algae biomass by submerged macrophytes at the end of incubation. Therefore, the bio-pump established in the present study can improve DO in algal blooms water and turn algal-derived organic matter into the plant biomass, which supplied a sustainable method for algae removal and GHG reduction.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Ecossistema , Eutrofização , Gases de Efeito Estufa/análise , Metano/análise
5.
RSC Adv ; 10(23): 13480-13488, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35493021

RESUMO

The effects of harmful algal blooms (HABs) on nutrient dynamics have been extensively studied; however, the response of nitrogen to continuous HAB degradation and subsequent reoccurrence is not well understood. Here, a small-scale experiment was conducted to assess how nitrogen in the sediment-water interface (SWI) responds to HAB degradation and subsequent reoccurrence at different initial algal densities. The results showed that during the algae decomposition stage, the NH4 +-N flux of the SWI remained positive but decreased with the increase in algal density from 3.5 × 107 to 2.3 × 108 cells per L, indicating that the sediment was the source of NH4 +-N. In contrast, the deposit was a sink of NO3 --N. However, during the reoccurrence of HAB, the distribution of NH4 +-N and NO3 --N fluxes was completely converted. Nitrogen flux analysis throughout algae decomposition and reoccurrence indicated that although the sediment acted as a sink of nitrogen, the flux was dependent on the initial algal density. Our results confirmed that algae decomposition and reoccurrence would greatly affect the nitrogen cycle of the SWI, during which dissolved oxygen (DO) and initial algal density dominated. This study is the first to show that the regulation of nitrogen flux and migration changes during continuous HAB decomposition and subsequent reoccurrence.

7.
Sci Total Environ ; 655: 520-528, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30476831

RESUMO

Carbon sources are a critical requirement for the proliferation of algae and the occurrence of harmful algal blooms (HABs), but are often turned into methane (CH4) after the collapse of severe HABs. Here, we attempt to remove HABs, reduce algal-derived CH4 emissions, and repair the broken carbon biogeochemical cycle in aquatic systems using an integrated ecological approach including flocculation, capping, and submerged macrophyte induction, preliminary at a microcosm scale. This strategy sustainably reached 98% algal removal after 65 days of incubation and resulted in an aerobic microenvironment (ORP = +12 mv) at the sediment-water interface. The approach contributed to an approximate 60% decline in CH4 released from the aquatic environment into the atmosphere jointly through assimilation of mineralized organic carbon by submerged macrophytes, production of carbon dioxide (CO2) under aerobic conditions, and aerobic CH4 oxidation. Some of the CO2 produced in the aquatic phase contributed to inorganic carbon and formed the submerged macrophytes biomass. A combination of flocculation, capping, and submerged macrophyte incubation were significant contributors to altering the carbon budget and sealing nearly 99% of the carbon in the simulated ecosystem (the majority in sediment, followed by submerged macrophytes), providing a sustainable way to reuse algal-derived carbon and reduce CH4 emissions.


Assuntos
Ciclo do Carbono , Gases de Efeito Estufa/análise , Proliferação Nociva de Algas , Lagos/química , Metano/análise , Consórcios Microbianos , Biomassa , Dióxido de Carbono/análise , China , Cianobactérias/crescimento & desenvolvimento , Monitoramento Ambiental , Floculação , Sedimentos Geológicos/química , Fitoplâncton/crescimento & desenvolvimento
8.
Sci Rep ; 7(1): 13518, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044136

RESUMO

Phytoplankton density can be influenced by a wide range of factors whereas the role of suspended particulate matter (SPM) are not clear in river that annually subjected to hydrodynamics shift. Here, spatial-temporal variation of environmental parameters and phytoplankton density were studied from January 2013 to December 2014 in Yulin River, a tributary of the Three Gorges Reservoir, China. Laboratory experiments were conducted to elucidate the key parameter and interpret how it impacted phytoplankton density. SPM is negatively correlated with phytoplankton density. Despite SPM in Yulin River revealed weaker NH3-N, NO3-N and PO4-P adsorption capabilities in comparison to that in other aquatic ecosystems, increase of water velocity from 0.1 to 0.8 m/s led to approximately 6.8-times increase of light attenuation rate. In experiments evaluating the aggregation of Chlorella pyrenoidosa upon SPM, floc size showed 7.4 to 22% fold increase compared to the SPM or algae itself, which was due to the interaction between SPM and phytoplankton extracellular polymeric substances. Our results suggest that SPM could contribute to the variation of phytoplankton density through the integrated process including light attenuation, nutrient adsorption and algae aggregation. This is the first evaluation of the multiple processes underlying the impact of SPM on phytoplankton.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...