Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 898: 165584, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467988

RESUMO

The applications of sulphate-reducing microorganisms (SRMs) in acid mine drainage (AMD) treatment systems have received extensive attention due to their ability to reduce sulphate and stabilize metal(loid)s. Despite great phylogenetic diversity of SRMs, only a few have been used in AMD treatment bioreactors. In situ enrichment could be an efficient approach to select new effective SRMs for AMD treatment. Here, we performed in situ enrichment of SRMs in highly stratified AMD sediment cores using different kinds of carbon source mixture. The dsrAB (dissimilatory sulfite reductase) genes affiliated with nine phyla (two archaeal and seven bacterial phyla) and 26 genera were enriched. Remarkably, those genes affiliated with Aciduliprofundum and Vulcanisaeta were enriched in situ in AMD-related environments for the first time, and their relative abundances were negatively correlated with pH. Furthermore, 107 dsrAB-containing metagenome-assembled genomes (MAGs) were recovered from metagenomic datasets, with 14 phyla (two archaeal and 12 bacterial phyla) and 15 genera. The relative abundances of MAGs were positively correlated with total carbon and sulphate contents. Our findings expanded the diversity of SRMs that can be enriched in AMD sediment, and revealed the physiochemical properties that might affect the growth of SRMs, which provided guidance for AMD treatment bioreators.


Assuntos
Microbiota , Sulfatos , Filogenia , Bactérias/genética , Archaea , Ácidos
3.
Micromachines (Basel) ; 11(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878018

RESUMO

The microvasculature is the primary conduit through which the human body transmits oxygen, nutrients, and other biological information to its peripheral tissues. It does this through bidirectional communication between the blood, consisting of plasma and non-adherent cells, and the microvascular endothelium. Current understanding of this blood-endothelium interface has been predominantly derived from a combination of reductionist two-dimensional in vitro models and biologically complex in vivo animal models, both of which recapitulate the human microvasculature to varying but limited degrees. In an effort to address these limitations, vascularized microfluidics have become a platform of increasing importance as a consequence of their ability to isolate biologically complex phenomena while also recapitulating biochemical and biophysical behaviors known to be important to the function of the blood-endothelium interface. In this review, we discuss the basic principles of vascularized microfluidic fabrication, the contribution this platform has made to our understanding of the blood-endothelium interface in both homeostasis and disease, the limitations and challenges of these vascularized microfluidics for studying this interface, and how these inform future directions.

4.
Cell Stem Cell ; 24(4): 608-620.e6, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30880025

RESUMO

Hematopoietic stem cell (HSC) quiescence is a tightly regulated process crucial for hematopoietic regeneration, which requires a healthy and supportive microenvironmental niche within the bone marrow (BM). Here, we show that deletion of Ptpn21, a protein tyrosine phosphatase highly expressed in HSCs, induces stem cell egress from the niche due to impaired retention within the BM. Ptpn21-/- HSCs exhibit enhanced mobility, decreased quiescence, increased apoptosis, and defective reconstitution capacity. Ptpn21 deletion also decreased HSC stiffness and increased physical deformability, in part by dephosphorylating Spetin1 (Tyr246), a poorly described component of the cytoskeleton. Elevated phosphorylation of Spetin1 in Ptpn21-/- cells impaired cytoskeletal remodeling, contributed to cortical instability, and decreased cell rigidity. Collectively, these findings show that Ptpn21 maintains cellular mechanics, which is correlated with its important functions in HSC niche retention and preservation of hematopoietic regeneration capacity.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Homeostase , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Septinas/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Tirosina Fosfatases não Receptoras/deficiência , Nicho de Células-Tronco
5.
Nat Rev Mater ; 4(5): 294-311, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-32435512

RESUMO

Cells actively interact with their microenvironment, constantly sensing and modulating biochemical and biophysical signals. Blood comprises a variety of non-adherent cells that interact with each other and with endothelial and vascular smooth muscle cells of the blood vessel walls. Blood cells are further experiencing a range of external forces by the hemodynamic environment and they also exert forces to remodel their local environment. Therefore, the biophysics and material properties of blood cells and blood play an important role in determining blood behaviour in health and disease. In this Review, we discuss blood cells and tissues from a materials perspective, considering the mechanical properties and biophysics of individual blood cells and endothelial cells as well as blood cell collectives. We highlight how blood vessels provide a mechanosensitive barrier between blood and tissues and how changes in vessel stiffness and flow shear stress can be correlated to plaque formation and exploited for the design of vascular grafts. We discuss the effect of the properties of fibrin on blood clotting, and investigate how forces exerted by platelets are correlated to disease. Finally, we hypothesize that blood and vascular cells are constantly establishing a mechanical homeostasis, which, when imbalanced, can lead to hematologic and vascular diseases.

6.
Nat Biomed Eng ; 2: 453-463, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30533277

RESUMO

Alterations in the mechanical properties of erythrocytes occurring in inflammatory and hematologic disorders such as sickle cell disease (SCD) and malaria often lead to increased endothelial permeability, haemolysis, and microvascular obstruction. However, the associations among these pathological phenomena remain unknown. Here, we report a perfusable, endothelialized microvasculature-on-a-chip featuring an interpenetrating-polymer-network hydrogel that recapitulates the stiffness of blood-vessel intima, basement membrane self-deposition and self-healing endothelial barrier function for longer than 1 month. The microsystem enables the real-time visualization, with high spatiotemporal resolution, of microvascular obstruction and endothelial permeability under physiological flow conditions. We found how extracellular heme, a hemolytic byproduct, induces delayed but reversible endothelial permeability in a dose-dependent manner, and demonstrate that endothelial interactions with SCD or malaria-infected erythrocytes cause reversible microchannel occlusion and increased in situ endothelial permeability. The microvasculature-on-a-chip enables mechanistic insight into the endothelial barrier dysfunction associated with SCD, malaria and other inflammatory and haematological diseases.

7.
Biomicrofluidics ; 12(4): 042203, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29861814

RESUMO

Numerous conditions and disease states such as sickle cell disease, malaria, thrombotic microangiopathy, and stroke significantly impact the microvasculature function and its role in disease progression. Understanding the role of cellular interactions and microvascular hemodynamic forces in the context of disease is crucial to understanding disease pathophysiology. In vivo models of microvascular disease using animal models often coupled with intravital microscopy have long been utilized to investigate microvascular phenomena. However, these methods suffer from some major drawbacks, including the inability to tightly and quantitatively control experimental conditions, the difficulty of imaging multiple microvascular beds within a living organism, and the inability to isolate specific microvascular geometries such as bifurcations. Thus, there exists a need for in vitro microvascular models that can mitigate the drawbacks associated with in vivo systems. To that end, microfluidics has been widely used to develop such models, as it allows for tight control of system inputs, facile imaging, and the ability to develop robust and repeatable systems with well-defined geometries. Incorporating endothelial cells to branching microfluidic models allows for the development of "endothelialized" systems that accurately recapitulate physiological microvessels. In this review, we summarize the field of endothelialized microfluidics, specifically focusing on fabrication methods, limitations, and applications of these systems. We then speculate on future directions and applications of these cutting edge technologies. We believe that this review of the field is of importance to vascular biologists and bioengineers who aim to utilize microfluidic technologies to solve vascular problems.

8.
Annu Rev Biomed Eng ; 20: 253-275, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29865873

RESUMO

The vasculature is a dynamic environment in which blood platelets constantly survey the endothelium for sites of vessel damage. The formation of a mechanically coherent hemostatic plug to prevent blood loss relies on a coordinated series of ligand-receptor interactions governing the recruitment, activation, and aggregation of platelets. The physical biology of each step is distinct in that the recruitment of platelets depends on the mechanosensing of the platelet receptor glycoprotein Ib for the adhesive protein von Willebrand factor, whereas platelet activation and aggregation are responsive to the mechanical forces sensed at adhesive junctions between platelets and at the platelet-matrix interface. Herein we take a biophysical perspective to discuss the current understanding of platelet mechanotransduction as well as the measurement techniques used to quantify the physical biology of platelets in the context of thrombus formation under flow.


Assuntos
Plaquetas/fisiologia , Mecanotransdução Celular , Administração Oral , Anticoagulantes/administração & dosagem , Biofísica , Géis , Hemostasia , Humanos , Ligantes , Microscopia de Força Atômica , Ativação Plaquetária , Adesividade Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Estresse Mecânico , Trombose/patologia , Trombose/fisiopatologia , Fator de von Willebrand/metabolismo
9.
Nat Commun ; 9(1): 509, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410404

RESUMO

Hemostasis encompasses an ensemble of interactions among platelets, coagulation factors, blood cells, endothelium, and hemodynamic forces, but current assays assess only isolated aspects of this complex process. Accordingly, here we develop a comprehensive in vitro mechanical injury bleeding model comprising an "endothelialized" microfluidic system coupled with a microengineered pneumatic valve that induces a vascular "injury". With perfusion of whole blood, hemostatic plug formation is visualized and "in vitro bleeding time" is measured. We investigate the interaction of different components of hemostasis, gaining insight into several unresolved hematologic issues. Specifically, we visualize and quantitatively demonstrate: the effect of anti-platelet agent on clot contraction and hemostatic plug formation, that von Willebrand factor is essential for hemostasis at high shear, that hemophilia A blood confers unstable hemostatic plug formation and altered fibrin architecture, and the importance of endothelial phosphatidylserine in hemostasis. These results establish the versatility and clinical utility of our microfluidic bleeding model.


Assuntos
Tempo de Sangramento , Testes de Coagulação Sanguínea , Hemorragia , Hemostasia , Microfluídica , Coagulação Sanguínea , Plaquetas/metabolismo , Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Ligantes , Adesividade Plaquetária , Resistência ao Cisalhamento , Estresse Mecânico
10.
Proc Natl Acad Sci U S A ; 115(2): 325-330, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29269394

RESUMO

Platelet aggregation at the site of vascular injury is essential in clotting. During this process, platelets are bridged by soluble fibrinogen that binds surface integrin receptors. One mystery in the mechanism of platelet aggregation pertains to how resting platelets ignore soluble fibrinogen, the third most abundant protein in the bloodstream, and yet avidly bind immobile fibrinogen on the surface of other platelets at the primary injury site. We speculate that platelet integrins are mechanosensors that test their ligands across the platelet-platelet synapse. To investigate this model, we interrogate human platelets using approaches that include the supported lipid bilayer platform as well as DNA tension sensor technologies. Experiments suggest that platelet integrins require lateral forces to mediate platelet-platelet interactions. Mechanically labile ligands dampen platelet activation, and the onset of piconewton integrin tension coincides with calcium flux. Activated platelets display immobilized fibrinogen on their surface, thus mediating further recruitment of resting platelets. The distribution of integrin tension was shown to be spatially regulated through two myosin-signaling pathways, myosin light chain kinase and Rho-associated kinase. Finally, we discovered that the termination of integrin tension is coupled with the exposure of phosphatidylserine. Our work reveals the highest spatial and temporal resolution maps of platelet integrin mechanics and its role in platelet aggregation, suggesting that platelets are physical substrates for one another that establish mechanical feedback loops of activation. The results are reminiscent of mechanical regulation of the T-cell receptor, E-cadherin, and Notch pathways, suggesting a common feature for signaling at cell junctions.


Assuntos
Plaquetas/metabolismo , Integrinas/metabolismo , Mecanotransdução Celular , Agregação Plaquetária , Anisotropia , Técnicas Biossensoriais , Plaquetas/química , Fibrinogênio/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Humanos , Integrinas/química , Ligantes , Bicamadas Lipídicas/metabolismo , Ativação Plaquetária , Ligação Proteica , Imagem com Lapso de Tempo/métodos
11.
Mol Ther ; 25(10): 2372-2382, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28780274

RESUMO

Ex vivo gene therapy using lentiviral vectors (LVs) is a proven approach to treat and potentially cure many hematologic disorders and malignancies but remains stymied by cumbersome, cost-prohibitive, and scale-limited production processes that cannot meet the demands of current clinical protocols for widespread clinical utilization. However, limitations in LV manufacture coupled with inefficient transduction protocols requiring significant excess amounts of vector currently limit widespread implementation. Herein, we describe a microfluidic, mass transport-based approach that overcomes the diffusion limitations of current transduction platforms to enhance LV gene transfer kinetics and efficiency. This novel ex vivo LV transduction platform is flexible in design, easy to use, scalable, and compatible with standard cell transduction reagents and LV preparations. Using hematopoietic cell lines, primary human T cells, primary hematopoietic stem and progenitor cells (HSPCs) of both murine (Sca-1+) and human (CD34+) origin, microfluidic transduction using clinically processed LVs occurs up to 5-fold faster and requires as little as one-twentieth of LV. As an in vivo validation of the microfluidic-based transduction technology, HSPC gene therapy was performed in hemophilia A mice using limiting amounts of LV. Compared to the standard static well-based transduction protocols, only animals transplanted with microfluidic-transduced cells displayed clotting levels restored to normal.


Assuntos
Microfluídica/métodos , Animais , Linhagem Celular , Células Cultivadas , Terapia Genética , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lentivirus/genética , Camundongos , Transdução Genética
12.
Nat Commun ; 8: 15594, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28593939

RESUMO

The vascular endothelium presents a major transport barrier to drug delivery by only allowing selective extravasation of solutes and small molecules. Therefore, enhancing drug transport across the endothelial barrier has to rely on leaky vessels arising from disease states such as pathological angiogenesis and inflammatory response. Here we show that the permeability of vascular endothelium can be increased using an external magnetic field to temporarily disrupt endothelial adherens junctions through internalized iron oxide nanoparticles, activating the paracellular transport pathway and facilitating the local extravasation of circulating substances. This approach provides a physically controlled drug delivery method harnessing the biology of endothelial adherens junction and opens a new avenue for drug delivery in a broad range of biomedical research and therapeutic applications.


Assuntos
Junções Aderentes/efeitos da radiação , Permeabilidade Capilar/efeitos da radiação , Sistemas de Liberação de Medicamentos/métodos , Endotélio Vascular/efeitos da radiação , Campos Magnéticos , Junções Aderentes/metabolismo , Animais , Linhagem Celular , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Camundongos , Camundongos Nus
13.
Lab Chip ; 17(3): 407-414, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28054086

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer that affects ∼22 000 people in the United States yearly. Understanding the complex cellular interactions of the tumor microenvironment is critical to the success and development of DLBCL treatment strategies. In vitro platforms that successfully model the complex tumor microenvironment without introducing the variability of in vivo systems are vital for understanding these interactions. To date, no such in vitro model exists that can accurately recapitulate the interactions that occur between immune cells, cancer cells, and endothelial cells in the tumor microenvironment of DLBCL. To that end, we developed a lymphoma-on-chip model consisting of a hydrogel based tumor model traversed by a vascularized, perfusable, round microchannel that successfully recapitulates key complexities and interactions of the in vivo tumor microenvironment in vitro. We have shown that the perfusion capabilities of this technique allow us to study targeted treatment strategies, as well as to model the diffusion of infused reagents spatiotemporally. Furthermore, this model employs a novel fabrication technique that utilizes common laboratory materials, and allows for the microfabrication of multiplex microvascular environments without the need for advanced microfabrication facilities. Through our facile microfabrication process, we are able to achieve micro vessels within a tumor model that are highly reliable and precise over the length of the vessel. Overall, we have developed a tool that enables researchers from many diverse disciplines to study previously inaccessible aspects of the DLBCL tumor microenvironment, with profound implications for drug delivery and design.


Assuntos
Linfoma Difuso de Grandes Células B/fisiopatologia , Técnicas Analíticas Microfluídicas/métodos , Modelos Biológicos , Microambiente Tumoral/fisiologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Células Tumorais Cultivadas
14.
Nat Mater ; 16(2): 230-235, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27723740

RESUMO

Haemostasis occurs at sites of vascular injury, where flowing blood forms a clot, a dynamic and heterogeneous fibrin-based biomaterial. Paramount in the clot's capability to stem haemorrhage are its changing mechanical properties, the major drivers of which are the contractile forces exerted by platelets against the fibrin scaffold. However, how platelets transduce microenvironmental cues to mediate contraction and alter clot mechanics is unknown. This is clinically relevant, as overly softened and stiffened clots are associated with bleeding and thrombotic disorders. Here, we report a high-throughput hydrogel-based platelet-contraction cytometer that quantifies single-platelet contraction forces in different clot microenvironments. We also show that platelets, via the Rho/ROCK pathway, synergistically couple mechanical and biochemical inputs to mediate contraction. Moreover, highly contractile platelet subpopulations present in healthy controls are conspicuously absent in a subset of patients with undiagnosed bleeding disorders, and therefore may function as a clinical diagnostic biophysical biomarker.


Assuntos
Coagulação Sanguínea/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Plaquetas/fisiologia , Citometria de Fluxo/métodos , Mecanotransdução Celular/fisiologia , Ativação Plaquetária/fisiologia , Adesividade Plaquetária/fisiologia , Células Cultivadas , Módulo de Elasticidade/fisiologia , Dureza/fisiologia , Humanos , Nanopartículas/química
15.
J Tissue Eng Regen Med ; 10(12): 989-999, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-24515660

RESUMO

Mesenchymal stem cells (MSCs) have been suggested as a potential cell source for tendon/ligament tissue engineering. Extrinsic cues, such as the chemical and physical properties of scaffolds, as well as external forces, play an important role in fibroblastic differentiation of these cells. In this study, we employed a collagen-fibre scaffold that mimics the chemical and fibrous structure and mechanical properties of tendon/ligament, and studied how imparting cyclic tension to these fibrous collagen scaffolds affects tendon/ligament fibroblastic differentiation of MSCs. Human MSCs attached and spread on the surface of the scaffolds, and appeared aligned along the fibres 24 h after seeding. Cyclic tension was then applied to cell-laden scaffolds over a period of 14 days (10% strain, 1 Hz, 3 h on/3 h off). Real time RT-PCR analysis indicated that scleraxis, a transcription factor associated with the tendon fibroblast phenotype, was found to be significantly upregulated only under cyclic tension. Immunohistochemical staining demonstrated that MSCs cultured under cyclic tension after 14 days secreted more extracellular matrix, including collagen I, collagen III and tenascin-C, compared to constructs in static culture, after 14 days in vitro. Our data indicate that cyclic tension can promote fibroblastic differentiation of MSCs in these fibrous collagen-based scaffolds, which may have significant applications in the development of tissue-engineered graft alternatives for tendon and ligament injuries. Copyright © 2014 John Wiley & Sons, Ltd.


Assuntos
Diferenciação Celular , Colágeno/química , Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Resistência à Tração , Alicerces Teciduais/química , Células Cultivadas , Fibroblastos/citologia , Humanos , Células-Tronco Mesenquimais/citologia
16.
Zhongguo Zhong Yao Za Zhi ; 40(6): 1086-90, 2015 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-26226750

RESUMO

At present, the objective of cutting and pruning Cistanche deserticola is to harvest in successive years and enhance the harvesting yield and quality of C. deserticola in the process of the artificial cultivating C. deserticola. An experiment was conducted focusing on cutting and pruning C. deserticola in artificial forests of Haloxylon ammodendron drip-irrigated with saline water at the hinter-land of the Taklimakan desert, according to different growth stages and lengths. The results were following: (1) The effect of cutting on C. deserticola was similar to that of pruning, which resulted in three kinds of morphological types, not related to the bloom and size of C. deserticola. (2) The growth forms were diversified after pruning. Among them, there had sprouting new body, died or maintaining life with no sprouting, mildewed on its surface layer, etc. However, some of new bodies were sprouting from the lower part of the old body. The death rate of bloomed C. deserticola was higher than that of the underground, and the death rate of the 40 cm in stubble height for C. deserticola was higher than those with the stubble height of 20 cm and 5 cm. (3) Most of the diameter of living C. deserticola after pruning was increasing, but some of them changed little. (4) The mildew and rot of C. deserticola and the broken of the roots of the H. ammodendron and the fallen of the point of the inoculated when it was dug, which would cause the death of the C. deserticola. On the other, the yield-increasing effect and the economic benefit of the techniques of the pruning of Cistanche would need further research and evaluate. Therefore, the application of this technique needs to be cautious.


Assuntos
Amaranthaceae/crescimento & desenvolvimento , Cistanche/crescimento & desenvolvimento , Florestas , Frutas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento
17.
Blood ; 126(4): 531-8, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25964667

RESUMO

Although the biology of platelet adhesion on subendothelial matrix after vascular injury is well characterized, how the matrix biophysical properties affect platelet physiology is unknown. Here we demonstrate that geometric orientation of the matrix itself regulates platelet α-granule secretion, a key component of platelet activation. Using protein microcontact printing, we show that platelets spread beyond the geometric constraints of fibrinogen or collagen micropatterns with <5-µm features. Interestingly, α-granule exocytosis and deposition of the α-granule contents such as fibrinogen and fibronectin were primarily observed in those areas of platelet extension beyond the matrix protein micropatterns. This enables platelets to "self-deposit" additional matrix, provide more cellular membrane to extend spreading, and reinforce platelet-platelet connections. Mechanistically, this phenomenon is mediated by actin polymerization, Rac1 activation, and αIIbß3 integrin redistribution and activation, and is attenuated in gray platelet syndrome platelets, which lack α-granules, and Wiskott-Aldrich syndrome platelets, which have cytoskeletal defects. Overall, these studies demonstrate how platelets transduce geometric cues of the underlying matrix geometry into intracellular signals to extend spreading, which endows platelets spatial flexibility when spreading onto small sites of exposed subendothelium.


Assuntos
Plaquetas/citologia , Plaquetas/metabolismo , Exocitose/fisiologia , Síndrome da Plaqueta Cinza/patologia , Adesividade Plaquetária/fisiologia , Síndrome de Wiskott-Aldrich/patologia , Citoesqueleto de Actina/metabolismo , Estudos de Casos e Controles , Membrana Celular/metabolismo , Células Cultivadas , Fibrinogênio/metabolismo , Fibronectinas/metabolismo , Síndrome da Plaqueta Cinza/metabolismo , Humanos , Técnicas Imunoenzimáticas , Ativação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Pseudópodes , Síndrome de Wiskott-Aldrich/metabolismo
18.
Blood Rev ; 29(6): 377-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26005062

RESUMO

During clot formation, platelets are subjected to various different signals and cues as they dynamically interact with extracellular matrix proteins such as von Willebrand factor (vWF), fibrin(ogen) and collagen. While the downstream signaling of platelet-ligand interactions is well-characterized, biophysical cues, such as hydrodynamic forces and mechanical stiffness of the underlying substrate, also mediate these interactions and affect the binding kinetics of platelets to these proteins. Recent studies have observed that, similar to nucleated cells, platelets mechanosense their microenvironment and exhibit dynamic physiologic responses to biophysical cues. This review discusses how platelet mechanosensing is affected by the hydrodynamic forces that dictate vWF-platelet interactions and fibrin polymerization and network formation. The similarities and differences in mechanosensing between platelets and nucleated cells and integrin-mediated platelet mechanosensing on both fibrin(ogen) and collagen are then reviewed. Further studies investigating how platelets interact with the mechanical microenvironment will improve our overall understanding of the hemostatic process.


Assuntos
Plaquetas/química , Citoesqueleto/metabolismo , Mecanotransdução Celular , Complexo Glicoproteico GPIb-IX de Plaquetas/química , Fator de von Willebrand/química , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAMTS13 , Plaquetas/metabolismo , Citoesqueleto/ultraestrutura , Fibrina/genética , Fibrina/metabolismo , Fibrinogênio/genética , Fibrinogênio/metabolismo , Regulação da Expressão Gênica , Humanos , Ativação Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/genética , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
19.
PLoS One ; 10(4): e0126624, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915413

RESUMO

During vascular injury, platelets adhere to exposed subendothelial proteins, such as collagen, on the blood vessel walls to trigger clot formation. Although the biochemical signalings of platelet-collagen interactions have been well characterized, little is known about the role microenvironmental biomechanical properties, such as vascular wall stiffness, may have on clot formation. To that end, we investigated how substrates of varying stiffness conjugated with the same concentration of Type I collagen affect platelet adhesion, spreading, and activation. Using collagen-conjugated polyacrylamide (PA) gels of different stiffnesses, we observed that platelets do in fact mechanotransduce the stiffness cues of collagen substrates, manifesting in increased platelet spreading on stiffer substrates. In addition, increasing substrate stiffness also increases phosphatidylserine exposure, a key aspect of platelet activation that initiates coagulation on the platelet surface. Mechanistically, these collagen substrate stiffness effects are mediated by extracellular calcium levels and actomyosin pathways driven by myosin light chain kinase but not Rho-associated protein kinase. Overall, our results improve our understanding of how the mechanics of different tissues and stroma affect clot formation, what role the increased vessel wall stiffness in atherosclerosis may directly have on thrombosis leading to heart attacks and strokes, and how age-related increased vessel wall stiffness affects hemostasis and thrombosis.


Assuntos
Plaquetas/fisiologia , Colágeno/metabolismo , Adesividade Plaquetária/fisiologia , Resinas Acrílicas/metabolismo , Actomiosina/metabolismo , Difosfato de Adenosina/metabolismo , Coagulação Sanguínea/fisiologia , Cálcio/metabolismo , Colágeno Tipo I/metabolismo , Humanos , Tromboxano A2/metabolismo
20.
Ann Biomed Eng ; 43(9): 2036-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25558848

RESUMO

While overuse of the supraspinatus tendon is a leading factor in rotator cuff injury, the underlying biochemical changes have not been fully elucidated. In this study, torn human rotator cuff (supraspinatus) tendon tissue was analyzed for the presence of active cathepsin proteases with multiplex cysteine cathepsin zymography. In addition, an overuse injury to supraspinatus tendons was induced through downhill running in an established rat model. Histological analysis demonstrated that structural damage occurred by 8 weeks of overuse compared to control rats in the region of tendon insertion into bone. In both 4- and 8-week overuse groups, via zymography, there was approximately a 180% increase in cathepsin L activity at the insertion region compared to the controls, while no difference was found in the midsubstance area. Additionally, an over 400% increase in cathepsin K activity was observed for the insertion region of the 4-week overused tendons. More cathepsin K and L immunostaining was observed at the insertion region of the overuse groups compared to controls. These results provide important information on a yet unexplored mechanism for tendon degeneration that may operate alone or in conjunction with other proteases to contribute to chronic tendinopathy.


Assuntos
Catepsina K/metabolismo , Catepsina L/metabolismo , Manguito Rotador/enzimologia , Tendinopatia/enzimologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Endogâmicos Dahl , Manguito Rotador/patologia , Tendinopatia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...