Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.117
Filtrar
1.
J Hepatocell Carcinoma ; 11: 1357-1373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011124

RESUMO

Background: CD276 is an emerging immune checkpoint molecule that has been implicated in various cancers. However, its specific role in hepatocellular carcinoma (HCC) remains unclear. This study examined the impact of CD276 on patient prognosis and the tumor microenvironment (TME). Methods: The Cancer Genome Atlas (TCGA) database was utilized to evaluate CD276 expression in HCC and the association between CD276 and immune indicators was also analyzed. The signaling pathways correlated with CD276 expression were identified by gene set enrichment analysis (GSEA). Different algorithms were used to assess immune cell infiltration. The effect of CD276 knockdown on HCC cell phenotypes and its relationship with macrophage polarization was examined using the cell counting kit 8 (CCK-8) assay and co-culture system. Results: CD276 was upregulated in HCC and associated with unfavorable clinical outcomes. Hgh CD276 expression was associated with enrichment of the G2/M checkpoint, E2F targets, and mitotic spindles. CD276 expression was correlated with the infiltration of immune cells, including high level of tumor-associated macrophages and low levels of CD8+ T cells. Knockdown of CD276 decreased HCC cell proliferation and increased apoptosis. CD276 silencing in HCC cells and co-culture with THP-1-derived macrophages had a regulatory effect on macrophage polarization and macrophage-mediated cell proliferation and migration. Conclusion: CD276 expression in HCC is associated with unfavorable clinical outcomes and may contribute to the development of an immunosuppressive microenvironment. Specifically, CD276 was associated with alterations in immune cell infiltration, immune marker expression, and macrophage polarization during HCC progression, suggesting its potential as a prognostic indicator and promising target for immunotherapeutic intervention in HCC.

2.
Food Chem ; 459: 140315, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38986203

RESUMO

Casein, the major allergen in cow's milk, presents a significant challenge in providing nutritional support for children with allergies. To address this issue, we investigated a composite enzyme, comprising papain and chymotrypsin, to reduce the allergenicity of casein. Enzymatic hydrolysis induced substantial structural changes in casein, diminishing its affinity for specific IgE and IgG antibodies. Additionally, in a BALB/c mouse model, casein hydrolysate alleviated allergic symptoms, evidenced by lower serum IgE and IgG levels, reduced plasma histamine, and decreased Th2 cytokine release during cell co-culture. Peptidomic analysis revealed a 52.38% and 60% reduction in peptides containing IgE epitopes in casein hydrolyzed by the composite enzyme compared to papain and chymotrypsin, respectively, along with a notable absence of previously reported T cell epitopes. These results demonstrate the potential of enzyme combinations to enhance the efficiency of epitope destruction in allergenic proteins, providing valuable insights into the development of hypoallergenic dairy products.

3.
Environ Sci Pollut Res Int ; 31(32): 44952-44964, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954340

RESUMO

Solanum lycopersicum L. can be classified into low Cd-accumulating and high Cd-accumulating types based on their accumulation characteristics of cadmium (Cd). There are many common S. lycopersicum varieties available in the market, but their specific Cd tolerance and enrichment abilities are not well understood. This article uses two S. lycopersicum cultivars, Yellow Cherry and Yellow Pearl, as experimental materials. The experimental method of soil pot planting was adopted, and Cd concentrations in the soil were added at 0, 0.6, 1.5, 2.5, 5, and 10 mg/kg. The changes in Cd content, biomass, photosynthetic pigment content, and photosynthetic parameters of the two S. lycopersicum cultivars were analyzed to screen for low-accumulation S. lycopersicum cultivars. The results showed that S. lycopersicum are Cd-sensitive plants. The Cd accumulation, photosynthetic parameters, and other basic indicators of Yellow Cherry basically showed significant differences when the soil Cd concentration was 0.6 mg/kg, and the biomass showed significant differences when the soil Cd concentration was 1.5 mg/kg. Except for the Cd accumulation in the roots and leaves of Yellow Pearl, which showed significant differences at a soil Cd concentration of 0.6 mg/kg, the other indicators basically showed significant differences when the soil Cd concentration was 1.5 mg/kg. When the soil Cd concentration was 0.6 mg/kg, the Cd accumulation in the fruit of Yellow Pearl was 0.04 mg/kg, making it a low-accumulation S. lycopersicum variety suitable for promoting cultivation in Cd-contaminated soil at 0.6 mg/kg. In conclusion, the Cd accumulation in the fruit of Yellow Pearl is significantly lower than that of Yellow Cherry and even below the Cd limit value for fresh vegetables specified in GB2762-2017. Therefore, Yellow Pearl can be grown as edible crops in soils with Cd concentrations ≤0.6 mg/kg. Furthermore, Yellow Cherry demonstrate strong Cd tolerance and can be used for the remediation of Cd-contaminated soils.


Assuntos
Cádmio , Poluentes do Solo , Solanum lycopersicum , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Fotossíntese/efeitos dos fármacos , Solo/química , Biomassa
4.
Environ Sci Ecotechnol ; 21: 100441, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39027464

RESUMO

The monitoring and management of aquatic ecosystems depend on precise estimates of biodiversity. Metabarcoding analyses of environmental nucleic acids (eNAs), including environmental DNA (eDNA) and environmental RNA (eRNA), have garnered attention for their cost-effective and non-invasive biomonitoring capabilities. However, the accuracy of biodiversity estimates obtained through eNAs can vary among different organismal groups. Here we evaluate the performance of eDNA and eRNA metabarcoding across nine organismal groups, ranging from bacteria to terrestrial vertebrates, in three cross-sections of the Yangtze River, China. We observe robust complementarity between eDNA and eRNA data. The relative detectability of eNAs was notably influenced by major taxonomic groups and organismal sizes, with eDNA providing more robust signals for larger organisms. Both eDNA and eRNA exhibited similar cross-sectional and longitudinal patterns. However, the detectability of larger organisms declined in eRNA metabarcoding, possibly due to differential RNA release and decay among different organismal groups or sizes. While underscoring the potential of eDNA and eRNA in large river biomonitoring, we emphasize the need for differential interpretation of eDNA versus eRNA data. This highlights the importance of careful method selection and interpretation in biomonitoring studies.

5.
Front Immunol ; 15: 1396124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957461

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is an immune dysfunction characterized by an exaggerated and pathological inflammatory response, potentially leading to systemic inflammatory reactions and multiple-organ failure, including renal involvement. HLH can be classified as primary or secondary, with primary HLH associated with genetic mutations affecting cell degranulation capacity, and secondary HLH often linked to infections, tumors, and autoimmune diseases. The pathogenesis of HLH is not fully understood, but primary HLH is typically driven by genetic defects, whereas secondary HLH involves the activation of CD8+ T cells and macrophages, leading to the release of inflammatory cytokines and systemic inflammatory response syndrome (SIRS). The clinical presentation of HLH includes non-specific manifestations, making it challenging to differentiate from severe sepsis, particularly secondary HLH due to infections. Shared features include prolonged fever, hepatosplenomegaly, hematopenia, hepatic dysfunction, hypertriglyceridemia, and hypofibrinogenemia, along with histiocytosis and hemophagocytosis. However, distinctive markers like dual hemocytopenia, hypertriglyceridemia, hypofibrinogenemia, and elevated sCD25 levels may aid in differentiating HLH from sepsis. Indeed, no singular biomarker effectively distinguishes between hemophagocytic lymphohistiocytosis and infection. However, research on combined biomarkers provides insights into the differential diagnosis. Renal impairment is frequently encountered in both HLH and sepsis. It can result from a systemic inflammatory response triggered by an influx of inflammatory mediators, from direct damage caused by these factors, or as a consequence of the primary disease process. For instance, macrophage infiltration of the kidney can lead to structural damage affecting various renal components, precipitating disease. Presently, tubular necrosis remains the predominant form of renal involvement in HLH-associated acute kidney injury (HLH-AKI). However, histopathological changes may also encompass interstitial inflammation, glomerular abnormalities, microscopic lesions, and thrombotic microangiopathy. Treatment approaches for HLH and sepsis diverge significantly. HLH is primarily managed with repeated chemotherapy to eliminate immune-activating stimuli and suppress hypercellularity. The treatment approach for sepsis primarily focuses on anti-infective therapy and intensive symptomatic supportive care. Renal function significantly influences clinical decision-making, particularly regarding the selection of chemotherapy and antibiotic dosages, which can profoundly impact patient prognosis. Conversely, renal function recovery is a complex process influenced by factors such as disease severity, timely diagnosis, and the intensity of treatment. A crucial aspect in managing HLH-AKI is the timely diagnosis, which plays a pivotal role in reversing renal impairment and creating a therapeutic window for intervention, may have opportunity to improve patient prognosis. Understanding the clinical characteristics, underlying causes, biomarkers, immunopathogenesis, and treatment options for hemophagocytic lymphohistiocytosis associated with acute kidney injury (HLH-AKI) is crucial for improving patient prognosis.


Assuntos
Injúria Renal Aguda , Cuidados Críticos , Linfo-Histiocitose Hemofagocítica , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/etiologia , Linfo-Histiocitose Hemofagocítica/terapia , Humanos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/terapia , Biomarcadores
6.
Phys Rev E ; 109(6-2): 065306, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39021008

RESUMO

In this work, the recent lattice Boltzmann (LB) model with self-tuning equation of state (EOS) [Huang et al., Phys. Rev. E 99, 023303 (2019)2470-004510.1103/PhysRevE.99.023303] is extended to three dimensions for the simulation of multiphase flows, which is based on the standard three-dimensional 27-velocity lattice and multiple-relaxation-time collision operator. To achieve the self-tuning EOS, the equilibrium moment is devised by introducing a built-in variable, and the collision matrix is improved by introducing some velocity-dependent nondiagonal elements. Meanwhile, the additional cubic terms of velocity in recovering the Newtonian viscous stress are eliminated to enhance the numerical accuracy. For modeling multiphase flows, an attractive pairwise interaction force is introduced to mimic the long-range molecular interaction, and a consistent scheme is proposed to compensate for the ɛ^{3}-order discrete lattice effect. Thermodynamic consistency in a strict sense is established for the multiphase LB model with self-tuning EOS, and the wetting condition is also treated in a thermodynamically consistent manner. As a result, the contact angle, surface tension, and interface thickness can be independently adjusted in the present theoretical framework. Numerical tests are first performed to validate the multiphase LB model with self-tuning EOS and the theoretical analyses of bulk and surface thermodynamics. The collision of equal-sized droplets is then simulated to demonstrate the applicability and effectiveness of the present LB model for multiphase flows.

7.
Int Immunopharmacol ; 136: 112369, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38824903

RESUMO

Estrogen and related receptors have been shown to have a significant impact on human development, reproduction, metabolism and immune regulation and to play a critical role in tumor development and treatment. Traditionally, the nuclear estrogen receptors (nERs) ERα and ERß have been thought to be involved in mediating the estrogenic effects. However, our group and others have previously demonstrated that the G protein-coupled estrogen receptor (GPER) is the third independent ER, and estrogen signaling mediated by GPER is known to play an important role in normal physiology and a variety of abnormal diseases. Interestingly, recent studies have progressively revealed GPER involvement in the maintenance of the normal immune system, abnormal immune diseases, and inflammatory lesions, which may be of significant clinical value primarily in the immunotherapy of tumors. In this article, we review current advances in GPER-related immunomodulators and provide a theoretical basis and potential clinical targets to ameliorate immune-related diseases and immunotherapy for tumors.


Assuntos
Neoplasias , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/imunologia , Receptores de Estrogênio/metabolismo , Animais , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia/métodos , Transdução de Sinais , Estrogênios/metabolismo
8.
J Hum Genet ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866925

RESUMO

BACKGROUND: Intronic GAA repeat expansion ([GAA] ≥250) in FGF14 is associated with the late-onset neurodegenerative disorder, spinocerebellar ataxia 27B (SCA27B, GAA-FGF14 ataxia). We aim to determine the prevalence of the GAA repeat expansion in FGF14 in Chinese populations presenting late-onset cerebellar ataxia (LOCA) and evaluate the characteristics of tandem repeat inheritance, radiological features and sympathetic nerve involvement. METHODS: GAA-FGF14 repeat expansion was screened in an undiagnosed LOCA cohort (n = 664) and variations in repeat-length were analyzed in families of confirmed GAA-FGF14 ataxia patients. Brain magnetic resonance imaging (MRI) was used to evaluate the radiological feature in GAA-FGF14 ataxia patients. Clinical examinations and sympathetic skin response (SSR) recordings in GAA-FGF14 patients (n = 16) were used to quantify sympathetic nerve involvement. RESULTS: Two unrelated probands (2/664) were identified. Genetic screening for GAA-FGF14 repeat expansion was performed in 39 family members, 16 of whom were genetically diagnosed with GAA-FGF14 ataxia. Familial screening revealed expansion of GAA repeats in maternal transmissions, but contraction upon paternal transmission. Brain MRI showed slight to moderate cerebellar atrophy. SSR amplitude was lower in GAA-FGF14 patients in pre-symptomatic stage compared to healthy controls, and further decreased in the symptomatic stage. CONCLUSIONS: GAA-FGF14 ataxia was rare among Chinese LOCA cases. Parental gender appears to affect variability in GAA repeat number between generations. Reduced SSR amplitude is a prominent feature in GAA-FGF14 patients, even in the pre-symptomatic stage.

9.
J Ethnopharmacol ; 333: 118407, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38824979

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Taohong Siwu Decoction (TSD), a classic traditional Chinese medicine formula, is used for the treatment of vascular diseases, including vascular dementia (VD). However, the mechanisms remain unclear. AIM OF STUDY: This study aimed to investigate whether TSD has a positive effect on cognitive impairment in VD rats and to confirm that the mechanism of action is related to the Endoplasmic Reticulum stress (ERs) and cell apoptosis signaling pathway. MATERIALS AND METHODS: A total of 40 male adult Sprague-Dawley rats were divided into four groups: sham-operated group (Sham), the two-vessel occlusion group (2VO), the 2VO treated with 4.5 g/kg/d TSD group (2VO + TSD-L), the 2VO treated with 13.5 g/kg/d TSD group (2VO + TSD-H). The rats underwent either 2VO surgery or sham surgery. Postoperative TSD treatment was given for 4 consecutive weeks. Behavioral tests were initiated at the end of gastrulation. Open-field test (OFT) was used to detect the activity level. The New Object Recognition test (NOR) was used to test long-term memory. The Morris water maze (MWM) test was used to examine the foundation of spatial learning and memory. As a final step, the hippocampus was taken for molecular testing. The protein levels of GRP78 (Bip), p-PERK, PERK, IRE1α, p-IRE1α, ATF6, eIF2α, p-eIF2α, ATF4, XBP1, Bcl-2 and Bax were determined by Western blot. Immunofluorescence visualizes molecular expression. RESULTS: In the OFT, residence time in the central area was significantly longer in both TSD treatment groups compared to the 2VO group. In the NOR, the recognition index was obviously elevated in both TSD treatment groups. The 2VO group had a significantly longer escape latency and fewer times in crossing the location of the platform compared with the Sham group in MWM. TSD treatment reversed this notion. Pathologically, staining observations confirmed that TSD inhibited hippocampal neuronal loss and alleviated the abnormal reduction of the Nissl body. In parallel, TUNEL staining illustrated that TSD decelerated neuronal apoptosis. Western Blot demonstrated that TSD reduces the expression of ERs and apoptotic proteins. CONCLUSION: In this study, the significant ameliorative effect on cognitive impairment of TSD has been determined by comparing the behavioral data of the 4 groups of rats. Furthermore, it was confirmed that this effect of TSD was achieved by suppressing the ERs-mediated apoptosis signaling pathway.


Assuntos
Apoptose , Disfunção Cognitiva , Demência Vascular , Medicamentos de Ervas Chinesas , Estresse do Retículo Endoplasmático , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Apoptose/efeitos dos fármacos , Demência Vascular/tratamento farmacológico , Demência Vascular/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ratos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Modelos Animais de Doenças , Aprendizagem em Labirinto/efeitos dos fármacos
10.
Front Oncol ; 14: 1388869, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919536

RESUMO

Introduction: Triple-negative breast cancer (TNBC) is linked to a poorer outlook, heightened aggressiveness relative to other breast cancer variants, and limited treatment choices. The absence of conventional treatment methods makes TNBC patients susceptible to metastasis. The objective of this research was to assess the clinical and pathological traits of TNBC patients, predict the influence of risk elements on their outlook, and create a prediction model to assist doctors in treating TNBC patients and enhancing their prognosis. Methods: We included 23,394 individuals with complete baseline clinical data and survival information who were diagnosed with primary TNBC between 2010 and 2015 based on the SEER database. External validation utilised a group from The Affiliated Lihuili Hospital of Ningbo University. Independent risk factors linked to TNBC prognosis were identified through univariate, multivariate, and least absolute shrinkage and selection operator regression methods. These characteristics were chosen as parameters to develop 3- and 5-year overall survival (OS) and breast cancer-specific survival (BCSS) nomogram models. Model accuracy was assessed using calibration curves, consistency indices (C-indices), receiver operating characteristic curves (ROCs), and decision curve analyses (DCAs). Finally, TNBC patients were divided into groups of high, medium, and low risk, employing the nomogram model for conducting a Kaplan-Meier survival analysis. Results: In the training cohort, variables such as age at diagnosis, marital status, grade, T stage, N stage, M stage, surgery, radiation, and chemotherapy were linked to OS and BCSS. For the nomogram, the C-indices stood at 0.762, 0.747, and 0.764 in forecasting OS across the training, internal validation, and external validation groups, respectively. Additionally, the C-index values for the training, internal validation, and external validation groups in BCSS prediction stood at 0.793, 0.755, and 0.811, in that order. The findings revealed that the calibration of our nomogram model was successful, and the time-variant ROC curves highlighted its effectiveness in clinical settings. Ultimately, the clinical DCA showcased the prospective clinical advantages of the suggested model. Furthermore, the online version was simple to use, and nomogram classification may enhance the differentiation of TNBC prognosis and distinguish risk groups more accurately. Conclusion: These nomograms are precise tools for assessing risk in patients with TNBC and forecasting survival. They can help doctors identify prognostic markers and create more effective treatment plans for patients with TNBC, providing more accurate assessments of their 3- and 5-year OS and BCSS.

11.
Cancer Lett ; 598: 217094, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38945204

RESUMO

Recent therapeutic strategies for the treatment of triple-negative breast cancer (TNBC) have shifted the focus from vascular growth factors to endothelial cell metabolism. This study highlights the underexplored therapeutic potential of peri-tumoral electroacupuncture, a globally accepted non-pharmacological intervention for TNBC, and molecular mechanisms. Our study showed that peri-tumoral electroacupuncture effectively reduced the density of microvasculature and enhanced vascular functionality in 4T1 breast cancer xenografts, with optimal effects on day 3 post-acupuncture. The timely integration of peri-tumoral electroacupuncture amplified the anti-tumor efficacy of paclitaxel. Multi-omics analysis revealed Glyoxalase 1 (Glo1) and the associated methylglyoxal-glycolytic pathway as key mediators of electroacupuncture-induced vascular normalization. Peri-tumoral electroacupuncture notably reduced Glo1 expression in the endothelial cells of 4T1 xenografts. Using an in vivo matrigel plug angiogenesis assay, we demonstrated that either Glo1 knockdown or electroacupuncture inhibited angiogenesis. In contrast, Glo1 overexpression increased blood vessel formation. In vitro pharmacological inhibition and genetic knockdown of Glo1 in human umbilical vein endothelial cells inhibited proliferation and promoted apoptosis via downregulating the methylglyoxal-glycolytic pathway. The study using the Glo1-silenced zebrafish model further supported the role of Glo1 in vascular development. This study underscores the pivotal role of Glo1 in peri-tumoral electroacupuncture, spotlighting a promising avenue for enhancing vascular normalization and improving TNBC treatment outcomes.

12.
Pharmacol Res ; 205: 107263, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876442

RESUMO

Pressure overload-induced pathological cardiac hypertrophy eventually leads to heart failure (HF). Unfortunately, lack of effective targeted therapies for HF remains a challenge in clinical management. Mixed-lineage leukemia 4 (MLL4) is a member of the SET family of histone methyltransferase enzymes, which possesses histone H3 lysine 4 (H3K4)-specific methyltransferase activity. However, whether and how MLL4 regulates cardiac function is not reported in adult HF. Here we report that MLL4 is required for endoplasmic reticulum (ER) stress homeostasis of cardiomyocytes and protective against pressure overload-induced cardiac hypertrophy and HF. We observed that MLL4 is increased in the heart tissue of HF mouse model and HF patients. The cardiomyocyte-specific deletion of Mll4 (Mll4-cKO) in mice leads to aggravated ER stress and cardiac dysfunction following pressure overloading. MLL4 knockdown neonatal rat cardiomyocytes (NRCMs) also display accelerated decompensated ER stress and hypertrophy induced by phenylephrine (PE). The combined analysis of Cleavage Under Targets and Tagmentation sequencing (CUT&Tag-seq) and RNA sequencing (RNA-seq) data reveals that, silencing of Mll4 alters the chromatin landscape for H3K4me1 modification and gene expression patterns in NRCMs. Interestingly, the deficiency of MLL4 results in a marked reduction of H3K4me1 and H3K27ac occupations on Thrombospondin-4 (Thbs4) gene loci, as well as Thbs4 gene expression. Mechanistically, MLL4 acts as a transcriptional activator of Thbs4 through mono-methylation of H3K4 and further regulates THBS4-dependent ER stress response, ultimately plays a role in HF. Our study indicates that pharmacologically targeting MLL4 and ER stress might be a valid therapeutic approach to protect against cardiac hypertrophy and HF.


Assuntos
Estresse do Retículo Endoplasmático , Insuficiência Cardíaca , Histona-Lisina N-Metiltransferase , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/etiologia , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Masculino , Humanos , Camundongos Knockout , Ratos , Camundongos , Células Cultivadas , Cardiomegalia/metabolismo , Cardiomegalia/genética , Ratos Sprague-Dawley , Trombospondinas
13.
Acta Pharmacol Sin ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937576

RESUMO

Reperfusion injury, which is distinct from ischaemic injury, occurs when blood flow is restored in previously ischaemic brain tissue, further compromising neurons and other cells and worsening the injury. There is currently a lack of pharmaceutical agents and therapeutic interventions that specifically mitigate cerebral ischaemia/reperfusion (I/R) injury. Ginsenoside Rg1 (Rg1), a protopanaxatriol-type saponin isolated from Panax ginseng C. A. Meyer, has been found to protect against cerebral I/R injury, but its intricate protective mechanisms remain to be elucidated. Numerous studies have shown that autophagy plays a crucial role in protecting brain tissue during the I/R process and is emerging as a promising therapeutic strategy for effective treatment. In this study, we investigated whether Rg1 protected against I/R damage in vitro and in vivo by regulating autophagy. Both MCAO and OGD/R models were established. SK-N-AS and SH-SY5Y cells were subjected to OGD followed by reperfusion with Rg1 (4-32 µM). MCAO mice were injected with Rg1 (30 mg·kg-1·d-1. i.p.) for 3 days before and on the day of surgery. Rg1 treatment significantly mitigated ischaemia/reperfusion injury both in vitro and in vivo. Furthermore, we demonstrated that the induction of autophagy contributed to I/R injury, which was effectively inhibited by Rg1 in both in vitro and in vivo models of cerebral I/R injury. Rg1 inhibited autophagy through multiple steps, including impeding autophagy initiation, inducing lysosomal dysfunction and inhibiting cathepsin enzyme activities. We revealed that mTOR activation was pivotal in mediating the inhibitory effect of Rg1 on autophagy. Treatment with Torin-1, an autophagy inducer and mTOR-specific inhibitor, significantly reversed the impact of Rg1 on autophagy, decreasing its protective efficacy against I/R injury both in vitro and in vivo. In conclusion, our results suggest that Rg1 may serve as a promising drug candidate against cerebral I/R injury by inhibiting autophagy through activation of mTOR signalling.

14.
ChemMedChem ; : e202400216, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943463

RESUMO

Copper, as an essential trace nutrient for human, plays a crucial role in numerous cellular activities, and is vital for maintaining homeostasis in organisms. Deviations from normal intracellular copper concentration range can disrupt the cellular homeostasis and lead to cell death. Cell death is the process in which cells lose their vitality and cannot sustain normal metabolism, which has various forms. The recently discovered cuproptosis mechanism differs from the previously recognized forms, which is triggered by intracellular copper accumulation. The discovery of cuproptosis has sparked interest among researchers, and this mechanism has been applied in the treatment of various intractable diseases, including different types of cancer. However, the developed cuproptosis-based therapies have revealed certain limitations, such as low immunostimulatory efficiency, poor tumor targeting, and inhibition by the tumor microenvironment. Therefore, researchers are devoted to combining cuproptosis with existing cancer therapies to develop more effective synergistic cancer therapies. This review summarizes the latest research advancements in the cuproptosis-based therapies for various types of cancer, with a focus on the synergistic cancer therapies. Finally, it provides an outlook on the future development of cuproptosis in anti-tumor therapy.

15.
J Hazard Mater ; 475: 134836, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889471

RESUMO

Urea abatement has been a prominent challenge for UPW production. This research proposed a productive strategy combining pre-chlorination and VUV/UV processes under acidic conditions to settle this problem. This study first revealed the reaction kinetics between urea and free chlorine in a large pH range from 2.5 to 9.6, where the reaction constant rate varied from 0.06 to 0.46 M-1·s-1. Substitution reaction mediated by Cl2 was the dominant process at low pH (pH<3). The differences of dominant pathways resulted in the differences in reaction products: The detected concentration of dichloramine at pH 2.5 was twice that at pH 4.5 and 6.5. Further, this study found that pre-chlorination/VUV/UV process could achieve the thorough removal of 2-mg/L urea with chlorination of less than 5 min and VUV/UV irradiation of less than 200 mJ/cm2. Chloride ions, low pH, and higher chlorine dosage were found to be the positive factors to improve urea removal efficiency in pre-chlorination/VUV/UV process. The reaction rate constants between chlorourea with·OH and·Cl were calculated to be 3.62 × 107 and 2.26 × 109 L·mol-1·s-1, respectively.·Cl,·OH and photolysis contributed 60.5 %, 22.9 % and 16.6 % in chlorourea degradation, respectively. Pre-chlorination/VUV/UV achieved a DOC removal efficiency of 78.5 %. And nitrogen in urea was converted into inorganic nitrogenous compounds. Finally, compared with direct VUV/UV/chlorine and VUV/UV/persulfate processes, this process saved more than 70 % of energy in VUV/UV unit.

16.
J Colloid Interface Sci ; 671: 46-55, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38788423

RESUMO

Efficient production of green hydrogen energy is crucial in addressing the energy crisis and environmental concerns. The oxygen evolution reaction (OER) poses a challenge in conventional overall water electrolysis due to its slow thermodynamically process. Urea oxidation reaction (UOR) offers an alternative anodic oxidation method that is highly efficient and cost-effective, with favorable thermodynamics and sustainability. Recently, there has been limited research on bifunctional catalysts that exhibit excellent activity for both OER and UOR reactions. In this study, we developed a selenium and iron co-doped nickel sulfide (SeFe-Ni3S2) catalyst that demonstrated excellent Tafel slopes of 53.9 mV dec-1 and 16.4 mV dec-1 for OER and UOR, respectively. Density Functional Theory (DFT) calculations revealed that the introduction of metal (iron) and nonmetallic elements (selenium) was found to coordinate the d-band center, resulting in improved adsorption/desorption energies of the catalysts and reduced the overpotentials and limiting potentials for OER and UOR, respectively. This activity enhancement can be attributed to the altered electronic coordination structure after the introduction of selenium (Se) and iron (Fe), leading to an increase in the intrinsic activity of the catalyst. This work offers a new strategy for bifunctional catalysts for OER and UOR, presenting new possibilities for the future development of hydrogen production and novel energy conversion technologies. It contributes towards the urgent search for technologies that efficiently produce green hydrogen energy, providing potential solutions to mitigate the energy crisis and protect the environment.

17.
Cell Biosci ; 14(1): 66, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783336

RESUMO

BACKGROUND: Human patients often experience an episode of serious seizure activity, such as status epilepticus (SE), prior to the onset of temporal lobe epilepsy (TLE), suggesting that SE can trigger the development of epilepsy. Yet, the underlying mechanisms are not fully understood. The low-density lipoprotein receptor related protein (Lrp4), a receptor for proteoglycan-agrin, has been indicated to modulate seizure susceptibility. However, whether agrin-Lrp4 pathway also plays a role in the development of SE-induced TLE is not clear. METHODS: Lrp4f/f mice were crossed with hGFAP-Cre and Nex-Cre mice to generate brain conditional Lrp4 knockout mice (hGFAP-Lrp4-/-) and pyramidal neuron specific knockout mice (Nex-Lrp4-/-). Lrp4 was specifically knocked down in hippocampal astrocytes by injecting AAV virus carrying hGFAP-Cre into the hippocampus. The effects of agrin-Lrp4 pathway on the development of SE-induced TLE were evaluated on the chronic seizure model generated by injecting kainic acid (KA) into the amygdala. The spontaneous recurrent seizures (SRS) in mice were video monitored. RESULTS: We found that Lrp4 deletion from the brain but not from the pyramidal neurons elevated the seizure threshold and reduced SRS numbers, with no change in the stage or duration of SRS. More importantly, knockdown of Lrp4 in the hippocampal astrocytes after SE induction decreased SRS numbers. In accord, direct injection of agrin into the lateral ventricle of control mice but not mice with Lrp4 deletion in hippocampal astrocytes also increased the SRS numbers. These results indicate a promoting effect of agrin-Lrp4 signaling in hippocampal astrocytes on the development of SE-induced TLE. Last, we observed that knockdown of Lrp4 in hippocampal astrocytes increased the extracellular adenosine levels in the hippocampus 2 weeks after SE induction. Blockade of adenosine A1 receptor in the hippocampus by DPCPX after SE induction diminished the effects of Lrp4 on the development of SE-induced TLE. CONCLUSION: These results demonstrate a promoting role of agrin-Lrp4 signaling in hippocampal astrocytes in the development of SE-induced development of epilepsy through elevating adenosine levels. Targeting agrin-Lrp4 signaling may serve as a potential therapeutic intervention strategy to treat TLE.

19.
Head Neck ; 46(7): 1660-1670, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695435

RESUMO

OBJECTIVE: This study aimed to explore the potential predictive value of oral microbial signatures for oral squamous cell carcinoma (OSCC) risk based on machine learning algorithms. METHODS: The oral microbiome signatures were assessed in the unstimulated saliva samples of 80 OSCC patients and 179 healthy individuals using 16S rRNA gene sequencing. Four different machine learning classifiers were used to develop prediction models. RESULTS: Compared with control participants, OSCC patients had a higher microbial dysbiosis index (MDI, p < 0.001). Among four machine learning classifiers, random forest (RF) provided the best predictive performance, followed by the support vector machines, artificial neural networks and naive Bayes. After controlling the potential confounders using propensity score matching, the optimal RF model was further developed incorporating a minimal set of 20 bacteria genera, exhibiting better predictive performance than the MDI (AUC: 0.992 vs. 0.775, p < 0.001). CONCLUSIONS: The novel MDI and RF model developed in this study based on oral microbiome signatures may serve as noninvasive tools for predicting OSCC risk.


Assuntos
Carcinoma de Células Escamosas , Aprendizado de Máquina , Microbiota , Neoplasias Bucais , Saliva , Humanos , Neoplasias Bucais/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Saliva/microbiologia , Carcinoma de Células Escamosas/microbiologia , Estudos de Casos e Controles , Idoso , Algoritmos , Valor Preditivo dos Testes , Adulto , Disbiose/microbiologia , Boca/microbiologia , RNA Ribossômico 16S/genética , Máquina de Vetores de Suporte
20.
Phytomedicine ; 130: 155754, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38820662

RESUMO

BACKGROUND: Gouty arthritis (GA), a common inflammatory condition triggered by monosodium urate crystal accumulation, often necessitates safer treatment alternatives due to the limitations of current therapies. Astilbin, a flavonoid from Smilax glabra Roxb, has demonstrated potential in traditional Chinese medicine for its anti-inflammatory properties. However, the anti-GA effect and its underlying mechanism have not been fully elucidated. PURPOSE: This study aimed to investigate the therapeutic potential of astilbin in GA, focusing on its effects on neutrophil extracellular traps (NETs), as well as the potential molecular target of GA both in vitro and in vivo. STUDY DESIGN: Firstly, astilbin inhibited the citrullinated histone H3 (Cit h3) protein levels and reduced the NETs formation in neutrophils stimulated by monosodium urate (MSU). Secondly, we wondered the effect of astilbin on migration of neutrophils and dimethyl-sulfoxide (DMSO)-differentiated HL-60 (dHL-60) cells under the stimulation of MSU. Then, the effect of astilbin on suppressing NETs through purinergic P2Y6 receptor (P2Y6R) and Interlukin-8 (IL-8)/ CXC chemokine receptor 2 (CXCR2) pathway was investigated. Also, the relationship between P2Y6R and IL-8/CXCR2 was explored in dHL-60 cells under stimulation of MSU. Finally, we testified the effect of astilbin on reducing NETs in GA through suppressing P2Y6R and then down-regulating IL-8/CXCR2 pathway. METHODS: MSU was used to induce NETs in neutrophils and dHL-60 cells. Real-time formation of NETs and migration of neutrophils were monitored by cell living imaging with or without MSU. Then, the effect of astilbin on NETs formation, P2Y6R and IL-8/CXCR2 pathway were detected by immunofluorescence (IF) and western blotting. P2Y6R knockdown dHL-60 cells were established by small interfering RNA to investigate the association between P2Y6R and IL-8/CXCR2 pathway. Also, plasmid of P2Y6R was used to overexpress P2Y6R in dHL-60 cells, which was employed to explore the role of P2Y6R in astilbin inhibiting NETs. Within the conditions of knockdown and overexpression of P2Y6R, migration and NETs formation were assessed by transmigration assay and IF staining, respectively. In vivo, MSU-induced GA mice model was established to assess the effect of astilbin on inflammation by haematoxylin-eosin and ELISA. Additionally, the effects of astilbin on neutrophils infiltration, NETs, P2Y6R and IL-8/CXCR2 pathway were analyzed by IF, ELISA, immunohistochemistry (IHC) and western blotting. RESULTS: Under MSU stimulation, astilbin significantly suppressed the level of Cit h3 and NETs formation including the fluorescent expressions of Cit h3, neutrophils elastase, myeloperoxidase, and intra/extracellular DNA. Also, results showed that MSU caused NETs release in neutrophils as well as a trend towards recruitment of dHL-60 cells to MSU. Astilbin could markedly decrease expressions of P2Y6R and IL-8/CXCR2 pathway which were upregulated by MSU. By silencing P2Y6R, the expression of IL-8/CXCR2 pathway and migration of dHL-60 cells were inhibited, leading to the suppression of NETs. These findings indicated the upstream role of P2Y6R in the IL-8/CXCR2 pathway. Moreover, overexpression of P2Y6R was evidently inhibited by astilbin, causing a downregulation in IL-8/CXCR2 pathway, migration of dHL-60 cells and NETs formation. These results emphasized that astilbin inhibited the IL-8/CXCR2 pathway primarily through P2Y6R. In vivo, astilbin administration led to marked reductions in ankle swelling, inflammatory infiltration as well as neutrophils infiltration. Expressions of P2Y6R and IL-8/CXCR2 pathway were evidently decreased by astilbin and P2Y6R inhibitor MRS2578 either alone or in combination. Also, astilbin and MRS2578 showed notable effect on reducing MSU-induced NETs formation and IL-8/CXCR2 pathway whether used alone or in combination, parallelly demonstrating that astilbin decreased NETs formation mainly through P2Y6R. CONCLUSION: This study revealed that astilbin suppressed NETs formation via downregulating P2Y6R and subsequently the IL-8/CXCR2 pathway, which evidently mitigated GA induced by MSU. It also highlighted the potential of astilbin as a promising natural therapeutic for GA.


Assuntos
Artrite Gotosa , Armadilhas Extracelulares , Flavonóis , Interleucina-8 , Neutrófilos , Receptores Purinérgicos P2 , Armadilhas Extracelulares/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Receptores Purinérgicos P2/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Artrite Gotosa/tratamento farmacológico , Células HL-60 , Flavonóis/farmacologia , Animais , Ácido Úrico/farmacologia , Receptores de Interleucina-8B/metabolismo , Masculino , Histonas/metabolismo , Anti-Inflamatórios/farmacologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...