Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3828, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714653

RESUMO

Stabilization of topological spin textures in layered magnets has the potential to drive the development of advanced low-dimensional spintronics devices. However, achieving reliable and flexible manipulation of the topological spin textures beyond skyrmion in a two-dimensional magnet system remains challenging. Here, we demonstrate the introduction of magnetic iron atoms between the van der Waals gap of a layered magnet, Fe3GaTe2, to modify local anisotropic magnetic interactions. Consequently, we present direct observations of the order-disorder skyrmion lattices transition. In addition, non-trivial topological solitons, such as skyrmioniums and skyrmion bags, are realized at room temperature. Our work highlights the influence of random spin control of non-trivial topological spin textures.

2.
Nat Mater ; 23(7): 898-904, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38622325

RESUMO

A magnon is a collective excitation of the spin structure in a magnetic insulator and can transmit spin angular momentum with negligible dissipation. This quantum of a spin wave has always been manipulated through magnetic dipoles (that is, by breaking time-reversal symmetry). Here we report the experimental observation of chiral spin transport in multiferroic BiFeO3 and its control by reversing the ferroelectric polarization (that is, by breaking spatial inversion symmetry). The ferroelectrically controlled magnons show up to 18% modulation at room temperature. The spin torque that the magnons in BiFeO3 carry can be used to efficiently switch the magnetization of adjacent magnets, with a spin-torque efficiency comparable to the spin Hall effect in heavy metals. Utilizing such controllable magnon generation and transmission in BiFeO3, an all-oxide, energy-scalable logic is demonstrated composed of spin-orbit injection, detection and magnetoelectric control. Our observations open a new chapter of multiferroic magnons and pave another path towards low-dissipation nanoelectronics.

3.
Nat Commun ; 15(1): 2234, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472180

RESUMO

Coherent spin waves possess immense potential in wave-based information computation, storage, and transmission with high fidelity and ultra-low energy consumption. However, despite their seminal importance for magnonic devices, there is a paucity of both structural prototypes and theoretical frameworks that regulate the spin current transmission and magnon hybridization mediated by coherent spin waves. Here, we demonstrate reconfigurable coherent spin current transmission, as well as magnon-magnon coupling, in a hybrid ferrimagnetic heterostructure comprising epitaxial Gd3Fe5O12 and Y3Fe5O12 insulators. By adjusting the compensated moment in Gd3Fe5O12, magnon-magnon coupling was achieved and engineered with pronounced anticrossings between two Kittel modes, accompanied by divergent dissipative coupling approaching the magnetic compensation temperature of Gd3Fe5O12 (TM,GdIG), which were modeled by coherent spin pumping. Remarkably, we further identified, both experimentally and theoretically, a drastic variation in the coherent spin wave-mediated spin current across TM,GdIG, which manifested as a strong dependence on the relative alignment of magnetic moments. Our findings provide significant fundamental insight into the reconfiguration of coherent spin waves and offer a new route towards constructing artificial magnonic architectures.

4.
Adv Mater ; 36(9): e2308555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38016700

RESUMO

2D layered materials with broken inversion symmetry are being extensively pursued as  spin source layers to realize high-efficiency magnetic switching. Such low-symmetry layered systems are, however, scarce. In addition, most layered magnets with perpendicular magnetic anisotropy show a low Curie temperature. Here, the experimental observation of spin-orbit torque magnetization self-switching at room temperature in a layered polar ferromagnetic metal, Fe2.5 Co2.5 GeTe2 is reported. The spin-orbit torque is generated from the broken inversion symmetry along the c-axis of the crystal. These results provide a direct pathway toward applicable 2D spintronic devices.

6.
Adv Sci (Weinh) ; 10(27): e2303443, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37505392

RESUMO

The van der Waals (vdW) ferromagnet Fe3-δ GeTe2 has garnered significant research interest as a platform for skyrmionic spin configurations, that is, skyrmions and skyrmionic bubbles. However, despite extensive efforts, the origin of the Dzyaloshinskii-Moriya interaction (DMI) in Fe3-δ GeTe2 remains elusive, making it challenging to acquire these skyrmionic phases in a controlled manner. In this study, it is demonstrated that the Fe content in Fe3-δ GeTe2 has a profound effect on the crystal structure, DMI, and skyrmionic phase. For the first time, a marked increase in Fe atom displacement with decreasing Fe content is observed, transforming the original centrosymmetric crystal structure into a non-centrosymmetric symmetry, leading to a considerable DMI. Additionally, by varying the Fe content and sample thickness, a controllable transition between Néel-type skyrmions and Bloch-type skyrmionic bubbles is achieved, governed by a delicate interplay between dipole-dipole interaction and the DMI. The findings offer novel insights into the variable skyrmionic phases in Fe3-δ GeTe2 and provide the impetus for developing vdW ferromagnet-based spintronic devices.

7.
Mater Horiz ; 10(8): 3034-3043, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37199532

RESUMO

In spintronics, ordered magnetic domains are important for magnetic microdevices and controlling the orientation of ordered magnetic domains is important for applications such as domain wall resistance and spin wave propagation. Although a magnetic field or a current can reorient ordered magnetic domains, an energy-efficient electric-field-driven rotation of the ordered magnetic domains remains elusive. Here, using a nanotrenched polymeric layer, we obtain ordered magnetic strip domains in Ni films on a ferroelectric substrate. By applying electric fields to the ferroelectric substrate, we demonstrate that the ordered magnetic strip domains in Ni films are switched between the y- and x-axes driven by electric-fields. This switching of magnetic strip orientation is attributed to the electric-field-modulated in-plane magnetic anisotropies along the x- and y-axes of the Ni films, which are caused by the anisotropic biaxial strain of the ferroelectric substrate via strain-mediated magnetoelectric coupling. These results provide an energy-efficient approach for manipulating the ordered magnetic domains using electric fields.

8.
Cells ; 11(20)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291099

RESUMO

The glutathione S-transferase (GST) family of detoxification enzymes can regulate the malignant progression and drug resistance of various tumors. Hematopoietic prostaglandin D synthase (HPGDS, also referred to as GSTS1), GSTZ1, and GSTA1 are abnormally expressed in multiple cancers, but their roles in tumorigenesis and development remain unclear. In this study, we used bioinformatics tools to analyze the connections of HPGDS, GSTZ1, and GSTA1 to a variety of tumors in genetic databases. Then, we performed biochemical assays in GBM cell lines to investigate the involvement of HPGDS in proliferation and drug resistance. We found that HPGDS, GSTZ1, and GSTA1 are abnormally expressed in a variety of tumors and are associated with prognoses. The expression level of HPGDS was significantly positively correlated with the grade of glioma, and high levels of HPGDS predicted a poor prognosis. Inhibiting HPGDS significantly downregulated GBM proliferation and reduced resistance to temozolomide by disrupting the cellular redox balance and inhibiting the activation of JNK signaling. In conclusion, this study suggested that HPGDS, GSTZ1, and GSTA1 are related to the progression of multiple tumors, and HPGDS is expected to be a prognostic factor in GBM.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Glutationa Transferase , Humanos , Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glutationa/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Prognóstico , Temozolomida/farmacologia
9.
Adv Mater ; 34(34): e2203038, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35776842

RESUMO

The search for efficient approaches to realize local switching of magnetic moments in spintronic devices has attracted extensive attention. One of the most promising approaches is the electrical manipulation of magnetization through electron-mediated spin torque. However, the Joule heat generated via electron motion unavoidably causes substantial energy dissipation and potential damage to spintronic devices. Here, all-oxide heterostructures of SrRuO3 /NiO/SrIrO3 are epitaxially grown on SrTiO3 single-crystal substrates following the order of the ferromagnetic transition metal oxide SrRuO3 with perpendicular magnetic anisotropy, insulating and antiferromagnetic NiO, and metallic transition metal oxide SrIrO3 with strong spin-orbit coupling. It is demonstrated that instead of the electron spin torques, the magnon torques present in the antiferromagnetic NiO layer can directly manipulate the perpendicular magnetization of the ferromagnetic layer. This magnon mechanism may significantly reduce the electron motion-related energy dissipation from electron-mediated spin currents. Interestingly, the threshold current density to generate a sufficient magnon current to manipulate the magnetization is one order of magnitude smaller than that in conventional metallic systems. These findings suggest a route for developing highly efficient all-oxide spintronic devices operated by magnon current.

10.
Nano Lett ; 18(9): 5974-5980, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30114354

RESUMO

Magnetic van der Waals (vdW) materials have emerged as promising candidates for spintronics applications, especially after the recent discovery of intrinsic ferromagnetism in monolayer vdW materials. There has been a critical need for tunable ferromagnetic vdW materials beyond room temperature. Here, we report a real-space imaging study of itinerant ferromagnet Fe3GeTe2 and the enhancement of its Curie temperature well above ambient temperature. We find that the magnetic long-range order in Fe3GeTe2 is characterized by an unconventional out-of-plane stripe-domain phase. In Fe3GeTe2 microstructures patterned by a focused ion beam, the out-of-plane stripe domain phase undergoes a surprising transition at 230 K to an in-plane vortex phase that persists beyond room temperature. The discovery of tunable ferromagnetism in Fe3GeTe2 materials opens up vast opportunities for utilizing vdW magnets in room-temperature spintronics devices.

11.
ACS Appl Mater Interfaces ; 9(12): 10855-10864, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28266829

RESUMO

We report electric-field control of magnetism of (Co/Pt)3 multilayers involving perpendicular magnetic anisotropy with different Co-layer thicknesses grown on Pb(Mg,Nb)O3-PbTiO3 (PMN-PT) FE substrates. For the first time, electric-field control of the interface magnetic anisotropy, which results in the spin reorientation transition, was demonstrated. The electric-field-induced changes of the bulk and interface magnetic anisotropies can be understood by considering the strain-induced change of magnetoelastic energy and weakening of Pt 5d-Co 3d hybridization, respectively. We also demonstrate the role of competition between the applied magnetic field and the electric field in determining the magnetization of the sample with the coexistence phase. Our results demonstrate electric-field control of magnetism by harnessing the strain-mediated coupling in multiferroic heterostructures with perpendicular magnetic anisotropy and are helpful for electric-field modulations of Dzyaloshinskii-Moriya interaction and Rashba effect at interfaces to engineer new functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...