Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 258(Pt 2): 129068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158069

RESUMO

Conductive hydrogel which belongs to a type of soft materials has recently become promising candidate for flexible electronics application. However, it remains difficult for conductive hydrogel-based strain sensors to achieve the organic unity of large stretchability, high conductivity, self-healing, anti-freezing, anti-drying and transparency. Herein, a multifunctional conductive organohydrogel with all of the above superiorities is prepared by crosslinking polyacrylamide (PAM) with dialdehyde starch (DAS) in glycerol-water binary solvent. Attributing to the synergy of abundant hydrogen bonding and Schiff base interactions caused by introducing glycerol and dialdehyde starch, respectively, the organohydrogel achieved balanced mechanical and electrical properties. Besides, the addition of glycerol promoted the water-locking effects, making the organohydrogel retain the superior mechanical properties and conductivity even at extreme conditions. The resultant organohydrogel strain sensor exhibits desirable sensing performance with high sensitivity (GF = 6.07) over a wide strain range (0-697 %), enabling the accurate monitoring of subtle body motions even at -30 °C. On the basis, a hand gesture monitor system based on the organohydrogel sensors arrays is constructed using machine learning method, achieving a considerable sign language recognition rate of 100 %, and thus providing convenience for communications between the hearing or speaking-impaired and general person.


Assuntos
Glicerol , Língua de Sinais , Amido/análogos & derivados , Humanos , Condutividade Elétrica , Hidrogéis , Água
2.
Biomacromolecules ; 24(3): 1287-1298, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36745900

RESUMO

Ion conductive hydrogels (ICHs) have attracted great interest in the application of ionic skin because of their superior characteristics. However, it remains a challenge for ICHs to achieve balanced properties of high strength, large fracture strain, self-healing and freezing tolerance. In this study, a strong, stretchable, self-healing and antifreezing ICH was demonstrated by rationally designing a multiphysically cross-linked network structure consisting of the hydrophobic association, metal-ion coordination and chain entanglement among poly(acrylic acid) (PAA) polymer chains. The deliberately designed Brij S 100 acrylate (Brij-100A) micelle cross-linker can effectively dissipate energy and endow hydrogels with desirable stretchability. The self-healing ability of hydrogels originates from the reversible hydrophobic association in micelles and Fe3+-COO- coordination. After the addition of NaCl, the chain-entangled physical network caused by the salting-out effect can both enhance mechanical strength and promote electron transport. With the synergy of hydrophobic association, mental-ligand coordination and chain entanglement, the PAA/Brij-100A/Fe3+/NaCl (PAA/BA/Fe3+/NaCl) hydrogels exhibited a high tensile strain of 1140%, a tensile strength of 0.93 MPa and a toughness of 3.48 MJ m-3. Besides, the PAA/BA/Fe3+/NaCl hydrogels exhibited a high conductivity of 0.43 S m-1 and good freezing resistance. The ionic skin based on the PAA/BA/Fe3+/NaCl hydrogels showed high sensitivity (GF = 5.29), wide strain range (0-950%), fast response time (220 ms) and good stability. Also, the self-healing ability of the ionic skin can significantly prolong its service time, and the antifreezing property can broaden its applicable temperature. This study offers new insight into the design of multifunctional ionic skin for wearable electronics.


Assuntos
Hidrogéis , Cloreto de Sódio , Pele , Acrilatos , Condutividade Elétrica , Íons , Micelas
3.
Adv Healthc Mater ; 8(20): e1900582, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31529779

RESUMO

Thrombus and restenosis are two main factors that cause the failure of vascular implants. Constructing a functional and confluent layer of endothelial cells (ECs) is considered an ideal method to prevent these problems. However, oxidative stress induced by the disease and implantation can damage ECs and hinder the endothelialization of implants. Thus, developing biomaterials that can protect ECs adhesion and proliferation from oxidative stress is urgently needed for the rapid endothelialization of vascular implants. In this work, a novel polyurethane (PU-TBN) is synthesized by employing tetramethylpyrazine-nitrone (TBN) as end-group to endow polymers with dual functions of antioxidant activity and promoting endothelialization. Common PU without TBN is also prepared to be control. Compared to PU, PU-TBN significantly promotes human umbilical vein endothelial cells (HUVECs) adhesion and proliferation, where cells spread well and a confluent endothelial layer is formed. PU-TBN also shows obvious free radical scavenging activity, and thus effectively attenuates oxidative stress to protect HUVECs from oxidative apoptosis. Moreover, PU-TBN exhibits enhanced antiplatelets effect, excellent biocompatibility, and similar mechanical properties to PU. These characteristics can endow PU-TBN with great potential to be used as vascular implants or coatings of other materials for rapid endothelialization under complex oxidative stress environment.


Assuntos
Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Estresse Oxidativo , Poliuretanos/química , Pirazinas/química , Engenharia Tecidual/métodos , Animais , Antioxidantes/farmacologia , Apoptose , Materiais Biocompatíveis , Prótese Vascular , Adesão Celular , Proliferação de Células , Sequestradores de Radicais Livres , Radicais Livres , Humanos , Camundongos , Células NIH 3T3 , Fármacos Neuroprotetores , Oxigênio/metabolismo , Adesividade Plaquetária , Polímeros/química , Coelhos , Resistência à Tração , Trombose/patologia
4.
J Mater Chem B ; 7(1): 150-156, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32254959

RESUMO

Stable and controllable nitric oxide (NO) release at the physiological level from biomedical materials remains a challenge for NO-based therapy. NO-generating polymers have great potential to achieve this goal because they can catalytically decompose endogenous S-nitrosothiols (RSNOs) into NO. However, the current catalytic surfaces based on such polymers often suffer from loss of catalytic sites, which can influence the stability of NO release in their long-term application. In this work, we proposed a novel strategy to enhance the catalytic stability of NO-catalytic materials by incorporating catalytic sites into the polymer backbone. Selenium-containing polyurethane (PU-Se) was synthesized by using the catalyst 2,2'-diselenodiethanol (SeDO) as the chain extender. A series of PU/PU-Se blend films were prepared to investigate the effect of PU-Se content on the catalytic properties. The blend films exhibited excellent catalytic activity, and also showed outstanding catalytic stability in comparison with PU coated by diselenide/dopamine (PU-PDA-Se). Among these blend films, PU-Se-10 exhibited a stable NO release rate of 5.05 × 10-10 mol cm-2 min-1 after exposure to PBS buffer for 30 days. Moreover, the PU/PU-Se films exhibited decreased platelet activation/adhesion, low hemolysis ratio, excellent biocompatibility, and similar mechanical properties to PU. It is expected that the newly designed PU-Se has great potential in generating stable NO release at the physiological level for the long-term application of blood-contacting medical devices.


Assuntos
Materiais Biocompatíveis/farmacologia , Óxido Nítrico/farmacologia , Poliuretanos/farmacologia , Animais , Catálise , Liberação Controlada de Fármacos , Eritrócitos , Camundongos , Células NIH 3T3 , Óxido Nítrico/química , Adesividade Plaquetária/efeitos dos fármacos , Coelhos , Selênio/química , Selênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...